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Preface 
 

 This textbook is intended to make considerations on the continuum mechanics of indentation contact 

in micro/nano-scales, experimental details for measuring/analyzing mechanical properties (elastic, 

plastic, elastoplastic, and viscoelastic properties), instrumented indentation apparatuses, and on the 

materials physics in micro/nano-regimes that makes a great contribution to developing various types 

of engineering materials and composites through designing their microstructures.  

 The contact hardness has been conventionally defined as a mean contact pressure calculated from 

the applied indentation load. The most widely utilized and well-known hardness number is the Vickers 

hardness; this hardness number is determined by pressing a Vickers indenter (a tetrahedral pyramidal 

diamond tip) on a material, and then by calculating the apparent contact pressure from the indentation 

load divided by the total contact area of the residual impression. Besides the Vickers indenter, 

depending on the tip-geometry of indenter, various types of indenters including Berkovich (trigonal 

pyramid), Brinell (sphere), and Rockwell (cone with a rounded-tip) indenters have also been widely 

acknowledged. 

  The history of the concept, test procedure, and the physics of contact hardness number date back to 

the mid-19th century, in which the hardness number was defined as the indentation load divided by the 

total contact area of residual impression. However, on the basis of the experimental results for 

spherical indentation on various metallic alloys along with the considerations on the geometrical 

similarity of indentation contact, in 1908, E. Meyer proposed the concept of “contact hardness, the 
Meyer hardness MH ” as a mean contact pressure defined by the applied load divided by the projected 

contact area of residual impression. The Meyer hardness of very ductile materials is closely related to 
the yield strength Y   via the relation of MH cY=   with the constraint factor c  . In 1920s, C. 

Prandtle examined the constraint factor in relation to the plastic flow beneath a two-dimensional flat 

punch, and then R. Hill extended his considerations to what is now known as the slip-line field theory, 
leading to the c -value of 2.57.  Based on their extensive as well as intensive research activities, the 

Meyer hardness MH  has long been recognized as a “measure of the yield strength Y ” of ductile 

metals.  Since the mid-20th, the engineering of organic polymers as well as of ceramic materials has 

significantly been progressed. Due to a significant elastic deformation of these engineering materials, 

their Meyer hardness numbers are by no means the measure of yield strength; the Meyer hardness is 

given by a function of the elastic modulus (Young’s modulus E ) and the yield strength Y . Thorough 

understanding of the materials physics of Meyer hardness will be given in this textbook for the 

materials including perfectly elastic, elastoplastic, fully plastic, as well as time-dependent viscoelastic 

materials. 

 In 1881, H. Hertz, 24 years old at that time, published a classic paper, On the contact of elastic 

solids, in which he made theoretical considerations on the contact pressure distributions of spherical 
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solids in order to understand the optical interference fringe patterns at contact. This paper founded the 

present contact mechanics as the “Hertzian contact theory”. Four years after his paper, in 1885, J. 

Boussinesq made a classical approach to finding the elastic stresses and their spatial distributions 

induced by arbitrary surface tractions on the basis of potential theory.  Though the Boussinesq’s 

theoretical framework included the Hertzian contact problem as a specific case, its analytical solution 

was first derived by A.E.H. Love in 1930s, and then by I.N. Sneddon in 1960s by applying the Hankel 

transforms to the Airy’s/Love’s stress functions, having led to the basis of the present elastic theory 

for conical/pyramidal indentation contact problems. 

  The classic book, “Contact Mechanics”, published by K.L Johnson in 1985, encompasses various 

types of contact problems in a systematic manner, including the Hertzian contact problems on the basis 

of continuum mechanics, but not deeply discussing the materials physics. Accordingly, none of 

considerations were made on the materials physics of elastoplastic/viscoelastic deformation and flow 

induced by indentation contact.  On the other hand, D. Tabor, through his book “Hardness of Metals” 

published in 1951, discussed in an intensive manner the correlation between the elastoplastic 

characteristics of metals and their indentation contact behavior, while no discussions were made for 

the contact behavior of organic polymers and engineering ceramic materials in micro/nano-regimes, 

due to the significant development of these engineering materials that has been made after the 

publication of his textbook.  

  In 1980’s, several types of conventional instrumented indentation apparatuses came onto the market. 

These apparatuses can measure the indentation load P  and the associated penetration depth h  in 

micro/nano-scales but cannot determine the indentation contact-area under the applied load.  This 

incapability of the contact-area determination in experiments is fatal, since none of material 

characteristics (elastic modulus, yield strength, any of viscoelastic functions, etc.) cannot be obtained 

in a quantitative manner without the experimental information on the in-situ contact-area.  We have 

to make several undesirable approximations/assumptions prior to estimating the contact-area in these 

conventional instrumented indentation apparatuses in order to determine the material characteristics.  

  Due to the axisymmetric nature of indentation, we need the information not only on the deformation 

along the loading direction, i.e., the penetration depth, but also on the deformation perpendicular to 

the loading axis, i.e., the contact area, in order to describe the indentation-induced surface deformation 

and flow. Accordingly, the quantitative information on the indentation contact-area is very essential in 

determining any of material characteristics. To overcome these difficulties included in the present 

conventional instrumented indentation systems, an instrumented indentation microscope, as a new 

generation of instrumented indentation apparatuses, was design and fabricated by T. Miyajima and M. 

Sakai in 2003. This indentation microscope can determine in experiment the indentation contact-area 

along with the load and the depth of penetration. Furthermore, once we utilized the indentation 

microscope, we can readily determine the elastic/elastoplastic material characteristics, as well as 
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quantitatively analyze any-types of viscoelastic functions by conducting computer-assisted indentation 

tests for the applied load, depth of penetration, as well as the applied contact area as functions of time. 

  Up to the present date, have not been published none of the appropriate textbooks that deal with the 

micro-nano materials physics based on the continuum mechanics of indentation contact. Throughout 

this textbook, therefore, the author intends to discuss the materials physics as well as the detailed 

considerations on the testing apparatuses, quantitative analyses of experimental data, etc. on the basis 

of continuum mechanics of indentation contact.  In the first several chapters, the continuum 

mechanics of indentation contact will be given, and then in the subsequent chapters, discussed will be 

the micro-nano materials characteristics (elastic, elastoplastic, viscoelastic properties) of several types 

of engineering materials by the use of the experimental data obtained with the conventional indentation 

apparatus as well as the instrumented indentation microscope. Intensive considerations on the finite 

element analyses will also be given that are definitely invaluable for the considerations on the materials 

physics of engineering materials with complicated microstructures such as film/substrate laminates.  

  The author acknowledges the collaborations of his research stuffs and students in The Toyohashi 

University of Technology. Without their contributions, the author cannot complete this textbook. In 

particular, the author appreciates the great contribution of Dr. T. Miyajima (National Institute of 

Advanced Industrial Science and Technology (AIST)) who successfully designed and fabricated the 

world’s first instrumented indentation microscope.   As will be repeatedly emphasized in this book, 

the quantitative determination of the contact area by the use of the instrumented indentation 

microscope is very essential in experiments for determining the micro-nano material characteristics 

without making any of undesirable assumption and approximation. The potentials of the instrumented 

indentation microscope will play an extremely significant role in establishing the theoretical as well 

as experimental frameworks of indentation contact mechanics. 

 

  

   M. Sakai 

                                           (Revised in January, 2020) 
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GENERAL CONCEPT OF DEFORMATION 
                 －STRAIN AND STRESS－ 
 
  Indentation contact mechanics is a field of the science and engineering 

of continuum mechanics that focuses on several types of contact 

problems. Very complicated is the mechanical field of the contacting area 

that is formed between two of the continuum bodies with different 

mechanical properties. Accordingly, we are sometimes facing to numbers 

of mathematical difficulties in describing the mechanical field of this 

contacting area. In applying the general stress/strain analysis to the 

indentation contact mechanics, therefore, it will be appropriate to make 

mathematical formulations for describing the mechanical equilibrium and 

the constitutive equations. This is the objective of the present chapter 

[1.1-1.3]. 

  The definition and the quantitative expression for the deformation of a 

solid body are given in this chapter. If all points within the body 

experience the same displacement, the body moves as a rigid translation, 

being not stretched or deformed internally. Under the applied load, the 

body must experience different displacements for strain to occur.   

Consider the deformations shown in Fig. 1.1, where the deformations are 

depicted in two-dimensional plane, for simplicity.  Suppose two points 

A and B initially separated by a small distance of dx . These points are 

experiencing translational motion along the x -axis.  The displacements 

at point A and B are Au and ( )B Au u δ= + , respectively.  Accordingly, 

by the use of Taylor expansion around the point A, the differential motion 

(the net displacement; i.e., elongation) δ  is then  

  
B A

A A

u u
u uu dx u dx
x x

δ = −
∂ ∂ = + − = ∂ ∂ 

 

The x  -component of strain as the differential displacement per unit 

length, i.e., the strain for elongation is then defined by  

  x
u

dx x
δε ∂= =

∂
            (1.1) 

Hence, the strain is a displacement gradient. Applying similar arguments 

x

Α Β A' B'

uA

uB(=uA+δ)
dx

C

D
D'

C'

dy

uD

uC δ

elongation

shear deformation 

y

γ

Figure 1.1 Elongation (incremental 
deformation) and shear deformation in 

two-dimensional space 

[1.1] S.P. Timoshenko, J.N. Goodier, 
     “Theory of Elasticity”, McGraw-Hill 
     (1970) 
[1.2] I.H. Shames, F.A. Cozzarelli, “Elastic   
     and Inelastic Stress Analysis”,  

Prentice Hall (1992) 
[1.3] D. Roylance, “Mechanics of Materials”, 

John Wiley & Sons (1996) 
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to the differential motions in the y - and z - directions, the y - and z

- components of normal strains are given by  

  y z
v w
y z

ε ε∂ ∂= =
∂ ∂

 (1.2) 

where v   and w   are, respectively, the displacements in y  - and z  - 

directions. 

  Elongation or compression is always associated with the change in the 

normal separation of atomic planes of the body deformed, while shear 

distortion results in relative sliding of these atomic planes, but no changes 

occur in their normal direction. The vertical line element CD having the 

length of dy in y-direction is experienced with the shear displacement 
of δ   to the horizontal direction (x-direction), and tilted to the line 
element C’D’ with the shear angle γ , as depicted in Fig. 1.1; 

  D C C C
u uu u u dy u dy
y y

δ  ∂ ∂= − = + − = ∂ ∂ 
 

The shear strain in y  -direction is thus defined by the displacement 

gradient of shear, ( )tanu y γ∂ ∂ = ;  

  ( )tan u
dy y
δγ γ ∂≈ = =

∂
 

In addition to the shear displacement of u along the x -direction, there 

exists the coupled shear displacement of v  to the y-direction. This is a 

requisite for prohibiting the rotation of this two-dimensional xy -plane in 

mechanical equilibrium, resulting in the shear strain of ∂v/∂x.  

Accordingly, a general formula for shear strain in the xy-plane is given 

by 

  xy
u v
y x

γ ∂ ∂= +
∂ ∂

 (1.3) 

In a similar way, the shear strains in yz- and zx-planes are described, 

respectively, by 

  yz
v w
z y

γ ∂ ∂= +
∂ ∂

 (1.4) 

  zx
w u
x z

γ ∂ ∂= +
∂ ∂

 (1.5) 

Since these six strains [the normal strains of ( xε , yε , zε ), and the shear 

strains of ( xyγ , yzγ , zxγ )] are written in terms of only three displacements 
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( u , v , w ), they cannot be specified arbitrarily; there must exist some 

correlations (compatibility equations) among these six strains. These 

compatibility relations stand for the physics that any adjacent two points 

in the continuum are neither overlapped nor cracked in between during 

the deformation. Equations (1.1) - (1.3) are rewritten with 

  
2 22 3 3 3 3

2 2 2 2 2 2
y xyx u v u v

y x y x x y x y x y x y
ε γε ∂ ∂∂ ∂ ∂ ∂ ∂= = = +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
, 

resulting in 

  
2 22

2 2
y xyx

y x x y
ε γε ∂ ∂∂

+ =
∂ ∂ ∂ ∂

 

Similarly, using the following four equations 

  

2 3 2 2

2 2 2 2

yzx

xyzx

u v w
y z x y z x x z x y

u w u v
y y z x y z y z x z

γε

γγ

∂∂ ∂ ∂ ∂= = +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂∂ ∂ ∂ ∂ ∂= + = +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

  

we have 

  
2

2 yz xyx zx

y z x x y z
γ γε γ∂ ∂ ∂ ∂∂= − + + ∂ ∂ ∂ ∂ ∂ ∂ 

 

Applying a similar differential operation to the other strain components, 

the following Saint Venant’s compatibility equations are finally obtained:  

    

2 22 2

2 2

2 2 22

2 2

2 22 2

2 2

2

2

2

y xy yz xyx x zx

y yz y yz xyzxz

yz xyx zx zxz z

y x x y y z x x y z

z y y z x z y x y z

x z x z x y z x y z

ε γ γ γε ε γ

ε γ ε γ γγε

γ γε γ γε ε

∂ ∂ ∂ ∂ ∂ ∂ ∂∂+ = = − + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
∂ ∂ ∂ ∂ ∂ ∂∂ ∂+ = = − + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂ ∂∂ ∂ ∂+ = = + − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

   

  (1.6) 

These compatibility equations along with the equations for mechanical 

equilibrium, the details of which are given below, play an important role 

in deriving the bi-harmonic equation that describes the mechanical 

responses of the continuum body under a given boundary condition.  

  Suppose a continuum body in mechanical equilibrium under several 

arbitrary tractions and displacement constraints acting on the boundary 

surfaces. These boundary tractions and constraints induce internal strains 

and forces (stresses) in the continuum body as the requisites for 

mechanical equilibrium. Consider now an infinitesimal rectangular 
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parallelepiped embedded in this continuum. Choose the x-, y-, and z-axes 

so as to be parallel to the edges of this rectangular parallelepiped, as 
shown in Fig. 1.2. The normal stresses σx, σy, and σz are defined as the 

normal forces acting on the x-, y-, and z-unit planes with their normal 

vectors directed to x-, y-, and z-coordinates, respectively. The shear 

stresses ( xyτ , xzτ ), ( yxτ , yzτ ), and ( zxτ , zyτ ) are the shear forces acting 

in these x-, y-, and z-unit planes; the first subscript identifies the 

respective unit planes in which the stress acts, while the second subscript 
identifies the coordinate direction of the stress itself; xyτ   is the shear 

stress acting in the x-plane and directing to the y-coordinate, by way of 

example.  

  The parallelepiped shown in Fig. 1.2 neither rotate nor translate, 

because it is embedded in a continuum with mechanical equilibrium.  

This fact implies that there exist momentum balances around the x-, y-, 

and z-axes, resulting in the following symmetric relations of shear 

stresses;  

   
xy yx

yz zy

zx xz

τ τ
τ τ
τ τ

=

=

=

 (1.7) 

Furthermore, the following force-balance must be satisfied along the x-

axis  

  

0,

x
x x

yx
yx yx

zx
zx zx

dx dydz dydz
x

dy dzdx dzdx
y

dz dxdy dxdy
z

Xdxdydz

σσ σ

τ
τ τ

ττ τ

∂ + − ∂ 
∂ 

+ + − ∂ 
∂ + + − ∂ 

+ =

 

resulting in the following equilibrium equation along the x-axis: 

  0xyx xz X
dx dy dz

τσ τ∂∂ ∂
+ + + =  (1.8a) 

where X stands for the x-directed body force (gravitational force, 

centrifugal force, etc.) acting on the continuum body. In a similar way to 

the x-axis, we have the following mechanical equilibrium equations for 

the y-, and z-axes, as well:  

x

y

σz

τzy

τzx

σx
τxz

τxy

σy

τyz
τyx

z
dx

dy

dz

 

Figure 1.2 Stress components in 

three dimensions acting on/in the 

respective surfaces of a rectangular 

parallelepiped in a continuum 
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  0yx y yz Y
dx dy dz
τ σ τ∂ ∂ ∂

+ + + =  (1.8b) 

  0zyzx z Z
dx dy dz

ττ σ∂∂ ∂
+ + + =  (1.8c) 

where Y and Z are the body forces directing to the y- and the z-coordinates, 

respectively.  

 The mechanical field induced by indentation loading/unloading 

processes is, in general, axisymmetric along the penetration axis.  This 

fact implies that the axisymmetric cylindrical coordinates (r, θ, z) 
depicted in Fig. 1.3 might be much more appropriate than the Cartesian 

(x, y, z)-coordinate for representing the indentation-induced contact field, 

compatibility relations, and the mechanical equilibrium equations.  In 

Fig. 1.3, the r-, θ -, and the z-axes represent, respectively, the radial, 
azimuthal, and the vertical coordinates. In the indentation contact 

mechanics, the vertical coordinate (the z-axis) is to the direction of 

indentation penetration. The respective components of the displacement 
in this coordinate system are denoted by ru , uθ , and zu .   The three-

dimensional strains in the cylindrical coordinate system are; 

  

zr

1

1

1

r
r

r

z
z

r
r

z
z

r z

u
r

u u
r r
u
z
u uu
r r r
u u
z r

u u
z r

θ
θ

θ θ
θ

θ
θ

ε

ε
θ

ε

γ
θ

γ
θ

γ

∂=
∂

∂
= +

∂
∂=
∂
∂ ∂= + −
∂ ∂
∂ ∂

= +
∂ ∂

∂ ∂= +
∂ ∂

 (1.9) 

The Saint Venant’s compatibility equations, i.e., Eq. (1.6) in (x, y, z)-

Cartesian coordinate system, are rewritten with the following expressions 

in (r, θ,  z)-cylindrical coordinate system: 
      

z
r

θ

dr

dz

dθ

σr

σz

σθ

τrz

τrθ

τzrτzθ

τθr

τθz

Figure 1.3  Three dimensional 

stresses in the cylindrical coordinate 

system 
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2

r rr
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zz z
rz

z r rz

r z r zr rz
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r
r r r r r

r r r zr z

r zr z

r
r z r r z r r r r z r

θ θ θ
θ

θ θ

θ θ θ θ
θ

ε γ γε ε ε
θθ

ε γε ε γ
θθ

ε ε γ

γ γ γ γε γγ
θ θ

∂ ∂∂ ∂ ∂   + − − = +   ∂ ∂ ∂ ∂∂    

∂ ∂∂ ∂ ∂  + + = + ∂ ∂ ∂∂ ∂  

∂ ∂ ∂
+ =

∂ ∂∂ ∂
∂ ∂ ∂∂ ∂∂ ∂   = − + − + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

∂
2

1 1 1

2 1

r z r zrz

z r zz z rz

z r r r r r z r

r r r z r r z r

θ θ θ θ θ

θ θ θ

ε ε ε γ γ γγ
θ θ θ

γ γ γε ε γ
θ θ

∂ − ∂ ∂ ∂∂∂   − = − + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂   
∂ ∂∂ ∂∂ ∂   − = + − −   ∂ ∂ ∂ ∂ ∂ ∂   

 

    (1.10) 

  The mechanical equilibrium equations in the cylindrical coordinate 

system, that are corresponding to Eqs. (1.8a) - (1.8c) in the Cartesian 

system, are given in Eq. (1.11) in terms of the R-, Θ-, and Z-body forces;  

  

1 0

2 1 0

1 0

r rr zr

r r z

zzr zr z

R
r r r z

r r r z

Z
r r r z

θ θ

θ θ θ θ

θ

σ σ τσ τ
θ

τ τ σ τ
θ

ττ τ σ
θ

− ∂∂ ∂
+ + + + =

∂ ∂ ∂
∂ ∂ ∂

+ + + + Θ =
∂ ∂ ∂

∂∂ ∂
+ + + + =

∂ ∂ ∂

 (1.11) 

The details for the derivation of Eqs. (1.9) - (1.11) are given in 

APPENDIX A. 
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CONTINUUM MECHANICS OF 
PERFECTLY ELASTIC BODY  

 
2.1 CONSTITUTIVE EQUATION 
 In the second-half of 17th century, Robert Hook made measuring small 

changes in the length of a long wire under various loads. He observed the 

fact that the load P and its resulting elongation δ  were related linearly as 
long as the loads were sufficiently small. Furthermore, he observed the 

fact that the wire recovered to the original length after unloading.  This 

relation has been generally known as the Hook’s law, and can be written 

by  
  P kδ=  

where the constant of proportionality k is referred to as the stiffness or the 

spring constant having the unit of N/m. He also recognized that k is not 

a material characteristic parameter, depending on the specimen shape as 

well as on the dimension.   

  A century afterword from the experiment of R. Hook, Thomas Young 

introduced a useful way to adjusting the stiffness so as to be a 

characteristic material property by introducing the concept of tensile 

stress σ  defined as the load per unit cross-sectional area combined to the 

concept of tensile strain ε as the deformation per unit length of the test 
specimen.  In terms of the stress and the strain, the Hook’s law is written 

by  
  Eσ ε=  

The constant of proportionality E in this linear law is referred to as the 

Young’s modulus or the modulus of elasticity, one of the most important 

mechanical characteristics of an elastic material.  It has the same unit as 

stress, Pa. 

  In general, a somewhat subtle contraction in the radial direction is 

observed, when a load is applied to an elastic rod in its axial direction, 

just as stretching a rubber band to make it longer in on direction makes it 

thinner in the other direction. This lateral contraction accompanying a 

longitudinal extension is called the Poisson’s effect, after the French 

mathematician, Simeon Denis Poisson.  The Poisson’s effect is resulted 

from the natural law of isometric deformation, i.e., no changes in volume 

after deformation. The Poisson’s ratio is a material characteristic property 

CHAPTER  2 

7



defined as  

  radial

axial

εν
ε

−
= , 

where the minus sign accounts for the sign change between the radial and 
axial strains; due to the Poisson’s effect, axial 0ε > results in radial 0ε < . 

  The three-dimensional expression for the constitutive equations of an 

elastic body is given in Eq. (2.1) in terms of the Young’s modulus E and 

the Poisson’s ratio ν ; 

  

( )

( )

( )

1

1

1

x x y z

y y z x

z z x y

xy yz zx
xy yz zx

E

E

E

G G G

ε σ ν σ σ

ε σ ν σ σ

ε σ ν σ σ

τ τ τγ γ γ

 = − + 

 = − + 

 = − + 

= = =

 (2.1) 

where the shear modulus G as the elastic modulus for shear deformation 

is related to the Young’s modulus E via the Poisson’s ratio ν in the 
following equation 

  
( )2 1

EG
ν

=
+

 (2.2) 

 Combining the Saint Venant’s compatibility (Eq. (1.6)), mechanical 

equilibrium equation (Eq. (1.8)), and the constitutive equation (Eq. (2.1)) 

for elastic body leads to the following Beltrami-Michell compatibility 

relations: 

    

( ) ( )

( ) ( )

( ) ( )

2 2

2

2 2

2

2 2

2

1 0 1 0

1 0 1 0

1 0 1 0

x xy

y yz

z zx

x yx

y zy

z xz

ν σ ν τ

ν σ ν τ

ν σ ν τ

∂ Σ ∂ Σ+ Δ + = + Δ + =
∂ ∂∂

∂ Σ ∂ Σ+ Δ + = + Δ + =
∂ ∂∂

∂ Σ ∂ Σ+ Δ + = + Δ + =
∂ ∂∂

  

  (2.3) 

In Eq. (2.3), Δ   is the Laplace operator (so called Laplacian) that is 

defined by 2 2 2 2 2 2x y zΔ = ∂ ∂ + ∂ ∂ + ∂ ∂ , and Σ  stands for the sum 
of normal stresses, x y zσ σ σΣ = + + . In general, mathematically very 

cumbersome procedures are required in solving the Beltrami-Michell 

equations under a given boundary condition.  However, as the details 
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will be discussed in the following section, the analytical solution of the 

Beltrami-Michell equations can be rather easily obtained in the states of 

plane-strain and of axial symmetry.  In Sec. 2.2, the elastic theory of 

two-dimensional plane-strain problems is given, and then followed by the 

considerations on the elastic indentation contact mechanics in Sec. 2.3 as 

axisymmetric problems. 

 

2.2 PLANE-STRAIN PROBLEMS 
  Let us consider the plane strain problems where the displacement w

in the z-direction is zero, i.e., 0w = , and the displacements u  and v  

in the x- and y-directions are respectively independent of the z-coordinate 

[1.1-1.3].  Substituting these plane-strain conditions into Eqs. (1.2), 

(1.4), and (1.5) leads to the following expressions for the normal and 

shear strains:  

  
zx zy

xy

0z

x y
u v u v
x y y x

ε γ γ

ε ε γ

= = =

∂ ∂ ∂ ∂= = = +
∂ ∂ ∂ ∂

 (2.4) 

Furthermore, by substituting Eq. (2.4) into the Saint Venant’s 

compatibility relation of Eq. (1.6), we have the following simple 

expression that holds among the normal and shear strains:   

  
2 22

2 2
y xyx

y x x y
ε γε ∂ ∂∂

+ =
∂ ∂ ∂ ∂

 (2.5) 

In plane-strain problems, the equilibrium equations, Eqs. (1.8a) and 

(1.8b), reduce to 

 0xyx

x y
τσ ∂∂

+ =
∂ ∂

 (2.6a) 

  0y x y

x y
τ σ∂ ∂

+ =
∂ ∂

 (2.6 b) 

  0xy yx yz zxτ τ τ τ= = =  (2.6 c) 

where the body forces of X and Y are assumed to be zero for simplicity.  
On the other hand, by substituting the relation of 0zε =  into Eq. (2.1), 

the constitutive equation of an elastic body in plane-strain is given as 
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( )

( )

1 '
'

1 '
'

0

0

x x y

y y x

z

xy
xy yz zx

E

E

G

ε σ ν σ

ε σ ν σ

ε
τ

γ γ γ

= −

= −

=

= = =

 (2.7) 

In Eq. (2.7), the elastic modulus 'E   and the Poisson’s ratio 'ν   in 

“plane-strain” are defined by ( )2' 1E E ν= −   and ( )' 1ν ν ν= −  , 

respectively. 
 The Saint Venant equation (Eq. (2.5)) in plane-strain state represents 

the compatibility among the strains, while the compatibility among the 

stresses, i.e., the Beltrami-Michell compatibility of elastic body, can be 

given by substituting Eq. (2.7) (the constitutive relations of perfectly 

elastic body in plane-strain) into Eq. (2.5);  

  ( ) ( ) ( )
22 2

2 2' ' 2 1 ' xy
x y y xy x x y

τ
σ ν σ σ ν σ ν

∂∂ ∂− + − = +
∂ ∂ ∂ ∂

 

    (2.8)  

Differentiating the equilibrium equations, Eqs. (2.6a) and (2.6b), with x 

and y results in the following relation 

  
2 22

y
2 22 xy x

x y x y
τ σσ∂ ∂∂

= − −
∂ ∂ ∂ ∂

 

and then substituting it into the Beltrami-Michell compatibility (Eq. 

(2.8)) finally leads to the following Laplace equation 

 ( )
2 2

2 2 0x yx y
σ σ ∂ ∂+ + = ∂ ∂ 

 (2.9a) 

Eq. (2.9a) is alternatively written by 

  ( ) 0x yσ σΔ + =  (2.9b) 

using the Laplace operator (Laplacian) 

  
2 2

2 2x y
∂ ∂Δ = +
∂ ∂

. 

The solution of Laplace equation is referred to as the harmonic function.  

Equation (2.9) encompasses all the requisites included in the 

compatibility relation (Eq. (2.5)), equilibrium equation (Eq. (2.6), as well 

as the elastic constitutive equation (Eq. (2.7)).  Accordingly, under the 

given boundary conditions applied to Eq. (2.9), we can solve any of 

10



plane-strain problems of elastic bodies. 
 G.B. Airy showed that if one introduces a stress function ( , )x yϕ  
such that 

  
2 2 2

2 2x y xyy x x y
ϕ ϕ ϕσ σ τ∂ ∂ ∂= = = −

∂ ∂ ∂ ∂
, (2.10)  

the equilibrium equations (Eqs. (2.6a) and (2.6b)) are automatically and 

reciprocally satisfied.  We have the following forth-order differential 
equation of the stress function ( , )x yϕ  by substituting Eq. (2.10) into 

Eq. (2.9); 

  

4 4 4

4 2 2 42

0

x x y y
ϕ ϕ ϕ

ϕ

∂ ∂ ∂+ +
∂ ∂ ∂ ∂
= Δ ⋅ Δ
=

 (2.11) 

The stress function ϕ  is, therefore, also called the bi-harmonic function 

since Eq. (2.11) is the Laplace equation of ϕΔ  .  Accordingly, the 

stresses and strains in elastic problems under any boundary conditions in 

two-dimensional plane-strain state can be found in a quantitative manner 
by substituting the solution ϕ  of Eq. (2.11) into Eq. (2.10), and then 

into Eq. (2.7).  

 

2.3 AXISYMMETRIC PROBLEMS 
 The axisymmetric problems along the penetration axis (z-axis) of 

indentation are independent of the azimuthal coordinate θ , and are 
appropriately represented as the three-dimensional problems in 

cylindrical coordinate.  Equation (1.9) in axisymmetric problems is, 

therefore, recast into 

  
0 0

r r z
r z

r z
r z zr

u u u
r r z

u u
z r

θ

θ θ

ε ε ε

γ γ γ

∂ ∂
= = =

∂ ∂
∂ ∂

= = = +
∂ ∂

 (2.12) 

Furthermore, applying Eq. (2.12) to the Saint Venant’s compatibility (Eq. 

(1.10)) leads to the following axisymmetric compatibility expressions:  
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0
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z rz

z r rz
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r
r r

r r r zz

r zr z

z r r
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θ

θ θ

ε ε ε

ε ε γ

ε ε γ

ε ε ε

∂∂  − − = ∂ ∂ 

∂ ∂ ∂+ =
∂ ∂∂

∂ ∂ ∂+ =
∂ ∂∂ ∂

∂ −∂  − = ∂ ∂ 

 (2.13) 

On the other hand, the axisymmetric expressions of the equilibrium 

equation (Eq. (1.11)) are given by  

  0r r zr

r r z
θσ σ σ τ− ∂ ∂+ + =

∂ ∂
 (2.14a) 

  0zr zr z

r r z
τ τ σ∂ ∂

+ + =
∂ ∂

 (2.14b) 

  θ θτ τ= =0r z  , (2.14c) 

where we assume that the body forces ( R , Θ , Z ) in Eq. (1.11) are all 

zero for simplicity.  

 The constitutive equations for perfectly elastic body ((Eq. (2.1)) in the 

Cartesian (x, y, z) coordinate turn to the following equations of 

axisymmetric problems in the cylindrical coordinate;  

  

( )

( )

( )

1

1

1

0 0

r r z

z r

z z r

zr
r z zr

E

E

E

G

θ

θ θ

θ

θ θ

ε σ ν σ σ

ε σ ν σ σ

ε σ ν σ σ

τγ γ γ

 = − + 

= − +  

 = − + 

= = =

 (2.15a) 

The conjugate expressions of Eq. (2.15a) in terms of strain and 

displacement are 

  

2 2

2 2

2 2

0 0

r
r r

r

z
z z

r z
r z zr zr

ue G e G
r

ue G e G
r
ue G e G
z

u uG G
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θ θ

θ θ

σ λ ε λ

σ λ ε λ

σ λ ε λ

τ τ τ γ

∂
= + = +

∂

= + = +

∂= + = +
∂

∂ ∂ = = = = + ∂ ∂ 

 (2.15b)  
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In Eq. (2.15b), the volumetric strain e  and the Lame constant λ  are 

respectively defined by 

  

( )( )1 1 2

r z

r r z

e
u u u
r r z

E

θε ε ε

νλ
ν ν

= + +
∂ ∂= + +
∂ ∂

=
+ −

 (2.16) 

Combining Eqs. (2.14) – (2.16) with Eq. (2.13) results in the following 

Beltrami-Michell compatibility in axisymmetric problems; 

  

( )

( )

2

2 2

2

2

2

2

2

2 1 0
1

2 1 0
1

1 0
1
1 1 0

1

r r

r

z

rz rz

r r

r rr

z

r zr

θ

θ θ

σ σ σ
ν

σ σ σ
ν

σ
ν

τ τ
ν

∂ ΣΔ − − + =
+ ∂

∂ΣΔ − − + =
+ ∂

∂ ΣΔ + =
+ ∂

∂ ΣΔ − + =
+ ∂ ∂

 (2.17) 

where Σ   represents the sum of normal stresses, r zθσ σ σΣ = + +  , 

while the Laplace operator Δ  in axisymmetric cylindrical coordinate is 

written by  

  

2 2

2 2

2

2

1

1
r r r z

r
r r r z

∂ ∂ ∂Δ = + +
∂ ∂ ∂

∂ ∂ ∂ = + ∂ ∂ ∂ 

 (2.18) 

  We have introduced the Airy’s stress function in Eq. (2.10) that enables 

the quantitative description of two-dimensional plane-strain problems via 

the bi-harmonic equation (Eq. (2.11)). In a similar way to the plane-strain 
problem, we introduce the Love’s stress function ϕ   for three-

dimensional axisymmetric elastic problems to represent the stress 

components in cylindrical coordinate; 
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2

2

2

2

2

2

1

(2 )

(1 )

r

z

rz

z r

z r r

z z

r z

θ

ϕσ ν ϕ

ϕσ ν ϕ

ϕσ ν ϕ

ϕτ ν ϕ

 ∂ ∂= Δ − ∂ ∂ 
∂ ∂ = Δ − ∂ ∂ 
 ∂ ∂= − Δ − ∂ ∂ 
 ∂ ∂= − Δ − ∂ ∂ 

 (2.19) 

Furthermore, once we assume that the stress function ϕ  is the solution 

of the following bi-harmonic equation 
     0ϕΔ ⋅ Δ = , (2.20) 

not only Eq. (2.14a) but also Eq. (2.14b) are automatically satisfied. In 

addition to these facts, by the use of Eqs. (2.15), (2.16), and (2.19) 

combined with the relations of ru r θε=  , and z zu dzε=   , the 

displacements ru   and zu   are easily written in terms of the stress 

function ϕ , as follows;  

  

2

2

2

2

2 2(1 )

r

z

Gu
r z

Gu
z

ϕ

ϕν ϕ

∂= −
∂ ∂

∂= − Δ −
∂

 (2.21) 

One can therefore quantitatively describe the stress-strain fields of the 

axisymmetric problem of any perfectly elastic body in cylindrical 
coordinate by substituting the stress function ϕ   (the solution of the 

biharmonic equation, Eq. (2.20)) into Eq. (2.19) combined with Eq. 

(2.15a). 
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2.4 SOLUTION OF BI-HARMONIC EQUATION 
                    IN AXISYMMETRIC PROBLEMS 

- APPLICATION OF HANKEL TRANSFORM - 
 

  As mentioned in the preceding section, in order to find the stress 
function ϕ   for elastic problems, we need to solve the bi-harmonic 

equation, Eq. (2.11) or Eq. (2.20), under a given boundary condition.  In 

the second half of 19th century to the beginning of 20th century, some of 

physicists and mathematicians have contended with solving the bi-

harmonic equation under the specific boundary conditions by the uses of 

polynomial equations and/or Fourier series. In general, the theories of 

complex functions have been widely applied to solving the bi-harmonic 
equation in the Cartesian ( x , y ) coordinate. On the other hand, in the 

cylindrical coordinate that is more appropriate for describing the 

indentation contact problems, it has been well-known that the use of the 

Bessel function-based Hankel transform is effective and useful for 

solving the harmonic/bi-harmonic equations. We will discuss in this 

section the application of Hankel transform to the bi-harmonic equation 

(Eq. (2.20)) for axisymmetric indentation contact problems of elastic 

body [2.1-2.2]. 
  In cylindrical coordinate system, the application of the method of 
separation variables to the axisymmetric Laplace equation ( ), 0r zϕΔ =  

leads to the ordinary differential equation with the variable r or z, and 

then the resultant equation with the variable r forms the first-kind Bessel 

differential equation. On the other hand, the Hankel-transform integral 

includes the Bessel function as its integral kernel. This is the reason why 

we can easily find the solution of the harmonic or the bi-harmonic 

equation via the Hankel transform. The details of Bessel function are 

given in Appendix B at the back of this book. 

  The Bessel function ( )nJ x  of the first kind of order n is defined as 

the solution of the following differential equation;  

  
2 2

2 2

( ) ( )1 1 ( ) 0n n
n

d J x dJ x n J x
dx x dx x

 
+ + − = 

 
 (2.22) 

The Hankel transform of the stress function ( , )r zϕ   is defined in Eq. 

(2.23) using the Bessel function of order n as the kernel of the following 

transform integral; 

[2.1] I.N. Sneddon, “Fourier Transforms”,   
     McGraw-Hill (1951) 
[2.2] D. Maugis, “Contact, Adhesion and    
     Rupture of Elastic Solids”, Springer 
     (2000) 
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  H

0
( , ) ( , ) ( )n nz r r z J r drϕ ξ ϕ ξ

∞
=  ,  (2.23) 

while its inverse is written by  

  H

0
( , ) ( , ) ( )n nr z z J r dϕ ξϕ ξ ξ ξ

∞
=   (2.24) 

Let us now consider the zero-order Hankel transform of ϕΔ ;  

  
00

2

0 02 0
0

( , ) ( )

( ) ( )

I r r z J r dr

r J r dr r J r dr
r r z

ϕ ξ

ϕ ξ ϕ ξ

∞

∞
∞

= Δ

∂ ∂ ∂ = + ∂ ∂ ∂ 







 

where Δ is the Laplacian operator (refer to Eq. (2.18)), and ϕ  means the 

Love’s stress function.  Applying the partial integration twice to the first 

term of the right-hand side of the above equation, and then using the zero-
order Bessel differential equation ( 0n =  in Eq. (2.22)), we have 

 
( )

( )
( ) ( )

2
0 0

02
1 0

( )
d J r d J r

J r
r d rd r

ξ ξ
ξ

ξ ξξ

      + + = , 

and then finally obtain the following result of the integral I ; 

  

00

2
2

02 0

2
2 H

02

( , ) ( )

( )

( , )

I r r z J r dr

d r J r dr
dz

d z
dz

ϕ ξ

ξ ϕ ξ

ξ ϕ ξ

∞

∞

= Δ

 
= − 
 
 

= − 
 



  (2.25) 

where use has been made of the mechanical requirement that the stress 
function ϕ   and its spatial gradient /d drϕ   always diminish with 

r → ∞ .  Replacing the stress function ϕ  with ϕ ϕ≡ Δ  in Eq. (2.25), 

and repeating the same mathematical operations used in deriving Eq. 

(2.25), we finally have the Hankel transform of the bi-harmonic equation, 

as follows;  

  ( )
2 2

2 2 H
02 2 , 0d d z

dz dz
ξ ξ ϕ ξ  

− − =  
  

 (2.26) 

Accordingly, one can get the solution ( )H
0 , zϕ ξ of bi-harmonic equation 

by solving the fourth-order ordinary differential equation, Eq. (2.26), and 

then the application of inverse Hankel transform to ( )H
0 , zϕ ξ  finally 

results in the stress function ( , )r zϕ  of the bi-harmonic equation (Eq. 
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(2.20)).  In other words, we can say that the Hankel transform of bi-

harmonic function ( , )r zϕ   satisfies the fourth-order ordinary 

differential equation, Eq. (2.26).  Accordingly, once we notice the fact 

that the characteristic (auxiliary) fourth-order polynomial equation (Eq. 

(2.26)) has the multiple roots of ξ± , it is rather easy to solve Eq. (2.26), 

resulting in the following general solution;  

  H
0 ( , ) ( ) ( )z zz A B z e C D z eξ ξϕ ξ ξ ξ−= + + + , (2.27) 

in which the integral constants A, B, C and D will be finally fixed under 

the given boundary conditions. 

  Let us now derive the analytical expressions for the stresses and the 

strains in terms of ( )H
0 , zϕ ξ  . These expressions will play some of 

important roles in the elastic theory of indentation contact mechanics, the 

details of which will soon be given in the following sections.  The order-

zero Hankel transform of ϕΔ  is given in Eq. (2.25), and the first order 

Hankel transform of the derivative /d drϕ  is reduced to the order-zero 

Hankel transform of ϕ , as follows (refer to Appendix B),   

  ( ) ( )1 00 0
/ ( )r d dr J r dr r J r drϕ ξ ξ ϕ ξ

∞ ∞
= −   

Using these facts combined with the Hankel transform of Eq. (2.21) and 

its inverse, we finally describe the displacements, ru   and zu  , in the 

real space through using the stress function ( )H
0 , zϕ ξ   in the Hankel-

space;   

  ( )
H

2 0
1

0
2 r

dGu J r d
dz
ϕξ ξ ξ

∞

= 



 (2.28) 

( ) ( ) ( )
2 H

2 H0
0 02

0

2 1 2 2 1z
dGu J r d
dz

ϕξ ν ν ξ ϕ ξ ξ
∞

 
= − − − 

 





 (2.29) 

In a similar manner to the above considerations, by applying the Hankel-

transform operations to Eq. (2.19), we can uniquely express the stress 

components, rσ , θσ , zσ , and rzτ  by the use of ( )H
0 , zϕ ξ , as follows; 
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( )

( )

3 H H
20 0

03
0

H
2 0

1
0

(1 )

1

r
d d J r d
dz dz

d J r d
r dz

ϕ ϕσ ξ ν ν ξ ξ ξ

ϕξ ξ ξ

∞

∞

 
= + − 

 

−









 (2.30) 

   
( )

( )

3 H H
20 0

03
0

H
2 0

1
0

1

d d J r d
dz dz

d J r d
r dz

θ
ϕ ϕσ ν ξ ξ ξ ξ

ϕξ ξ ξ

∞

∞

 
= − 

 

+









 (2.31) 

   ( ) ( )
3 H H

20 0
03

0

1 (2 )z
d d J r d
dz dz
ϕ ϕσ ξ ν ν ξ ξ ξ

∞
 

= − − − 
 





 (2.32) 

   ( )
2 H

2 2 H0
0 12

0

(1 )rz
d J r d
dz

ϕτ ξ ν ν ξ ϕ ξ ξ
∞

 
= + − 

 





 (2.33) 

Equations (2.28) - (2.33) will play an important role in describing the 

indentation load P   vs. the penetration depth h   relation ( P  - h

relation) for  axisymmetric indentation problems (cylindrical punch, 

spherical/conical indentation), the details of which will be given in the 

subsequent chapter for perfectly elastic body. 
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INDENTATION CONTACT MECHANICS 
  OF PERFECTLY ELASTIC BODY 

 
 The tip-geometry of the conventional indenter includes sphere (Brinell 

indenter), cone with rounded tip (Rockwell indenter), and pyramid 

(Vickers tetrahedral indenter; Berkovich trihedral indenter).  These 

indenters have been utilized in experiments for determining not only the 

contact hardness, but also other mechanical properties.  One can 

estimate/determine the mechanical characteristics of the material tested 

through analyzing the indentation load P vs. penetration depth h relation, 

i.e., P-h relation. It will be readily expected that the P-h relation is highly 

dependent on the tip-geometry of indenter.  We will discuss in this 

chapter the elastic indentation contact mechanics of the axisymmetric 

indenter with an arbitrary tip-geometry [2-2]. 
  A schematic contact view is depicted in Fig. 3.1 for an axisymmetric 

indenter with arbitrary tip-geometry that is pressed onto an elastic half-

space with the indentation load of P (the contact friction between the 

indenter and the surface of elastic body is assumed to be zero for 

simplicity). The geometrical parameters of indentation are: the 
penetration depth h, contact depth ch , contact radius a, and the surface 

displacement ( ,0)zu r   of contact plane at the location r from the 

penetration-axis (z-axis). The boundary conditions at the free surface 

(z=0) are given by  

  
( ) ( )
( )
( )

,0 ; 0 1
,0 0; 1
,0 0

z

z

rz

u h f

r

ρ ρ ρ
σ ρ ρ
τ

= − ≤ ≤

= >

=

 (3.1) 

where r aρ =   is the non-dimensional radius normalized with the 
contact radius a, and ( )f ρ  is the shape-function of the axisymmetric 

indenter defined with (0) 0f = . The first relation in Eq. (3.1) describes 

the surface displacement within the contact area ( 0 1ρ≤ ≤ ), the second 

means the free surface with no stresses along the z-direction outside the 
contact area ( 1ρ >  ), and the third relation represents the frictionless 

contact. 

  All of the stresses at the locations far away of the contact area ( r → ∞ ) 

must be zero. This fact implies that the Hankel transform of the bi-

r

z

P

h
h

c
h

s

a

uz(r,0)
r

0

f(r/a)

Figure3.1 The surface deformation 
( )f r a  of elastic half-space for an 

axisymmetric indentation contact.   

CHAPTER  3 
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harmonic stress function ( )H
0 , zϕ ξ  given in Eq. (2.27) must be finite in 

the region ofξ → ∞ , leading to the following formula;  

  H
0 ( , ) ( ) zz A B z e ξϕ ξ ξ −= +  (2.27a) 

Substituting the frictionless boundary condition ( ),0 0rz rτ =   into Eq. 

(2.33) results in 

  ( ) ( )
2 H

2 H 0
0 2

0

1 ,0 0
z

d
dz
ϕν ξ ϕ ξ ν

=

 
− + = 

 
, 

 and then combining Eq. (2.27a) with the above relation leads to 

2A Bν= . Accordingly, the Hankel transform of the bi-harmonic stress 
function ( )H

0 , zϕ ξ  is represented with  

  ( ) ( )H
0 , 2 zz B z e ξϕ ξ ν ξ −= +  (3.2) 

Furthermore, Eqs. (2.29) and (2.32) combined with the boundary 

conditions of Eq. (3.1) finally fix the unknown integral constant B   as 

follows; 

  ( ) ( )1

3 0

' cos
2
E aB t a t dtχ ξ
ξ

= −   (3.3) 

in which 'E  denotes the plane-strain elastic modulus, ( )2' 1E E ν= − . 

The Sneddon’s function ( )tχ  in Eq. (3.3) is defined by   

  
2 2

0

2 '( )( )
t f xt h t dx

t x
χ

π
 

= −  − 





 (3.4) 

in terms of the shape-function of indenter ( )f r   and the penetration 

depth h  .  We, therefore, finally obtain the analytical expression of

( )H
0 , zϕ ξ ;  

    ( ) ( ) 1H
0 3 0

', 2 ( )cos( )
2

z E az z e t a t dtξϕ ξ ν ξ χ ξ
ξ

−= − +   (3.5) 

by substituting Eq. (3.3) into Eq. (3.2).  Equation (3.5) makes it possible 

for us to quantitatively describe the surface deformation and the stresses 

of elastic half-space for an arbitrary axisymmetric indentation contact 

(see Fig. 3.1) through the uses of Eqs. (2.28) - (2.33).   

  Let us start discussing the indentation load P vs. the penetration depth 

h relationship, i.e., P - h relationship, in terms of ( )H
0 , zϕ ξ  (Eq. (3.5)). 

Substituting Eqs. (3.4) and (3.5) into Eq. (2.32) and using the fact that the 
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indentation load P is described by ( )
0

2 ,0
a

zP r r drπ σ= −   in terms of the 

contact pressure ( ),0z rσ   within the contact area ( )r a≤  , we finally 

have the following P - h relation; 
  

 
1

2

0

( )2 '
1
xf xP aE h dx

x

 
 = −
 − 





 (3.6) 

Furthermore, combining Eq. (3.5) with Eq. (2.32) results in the contact 
pressure ( ,0)zσ ρ  within the contact area ( 1ρ < ) as follows; 

     
1

2 2 2

' (1) '( )( ,0)
2 1

z
E t dt
a tρ

χ χσ ρ
ρ ρ

 
= − − 

 − − 





 (3.7) 

On the other hand, by substituting Eq. (3.5) into Eq. (2.29), the 
displacement ( ,0)zu ρ  along the z-direction, i.e., the displacement along 
the loading direction of the free-surface outside the contact zone ( 1ρ > ) 

is written by 

 

1

2 2
0

11 1

0

( )( ,0)

1(1)sin '( )sin

z
t dtu

t
tt dt

χρ
ρ

χ χ
ρ ρ

− −

=
−

= −






 (3.8) 

Based on the preceding considerations on the indentation contact 

mechanics of elastic body for an axisymmetric indenter with arbitrary tip-
geometry of ( )f r , let us discuss the elastic contact mechanics for the flat-

punch, sphere, as well as the cone indentation in what follows.  

 

3.1 FLAT-ENDED CYLINDRICAL PUNCH 
 In Fig 3.2, depicted is the deformation of the indented elastic half-space 
for a flat-ended cylindrical punch with the radius of 0a . The indenter’s 
tip-geometry is denoted by ( )f ρ ; 

 ( ) 0 ; 0 1f ρ ρ= ≤ ≤  

where 0( / )r a=ρ   is the non-dimensional radius normalized with the 

radius 0a  . Equation (3.6) combined with this tip-geometry function 

reduces to the following simple P - h  relation, since the integral in the 

right-hand side of Eq. (3.6) turns to zero; 
  02 'P a E h=  (3.9) 

Equation (3.9) means that the indentation load P  linearly increases with 

r

z

P

h

a0

uz(r,0)0 r.

Figure 3.2 The surface-displacement 

of an elastic half-space indented by a 

flat-ended cylindrical punch 
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the increase in the penetration depth h  , and the slope of this linear 

relation gives the Young’s modulus 'E  of the elastic body indented. In 
addition to this fact, noticing the expression of ( ) 2t hχ π=  in Eq. (3.4), 

the contact stresses ( ,0)zσ ρ   within the contact zone ( 0 1ρ≤ ≤  ) is 

written as 

  
2

( , 0) 1 1 ; 0 1
2 1

z

mp
σ ρ ρ

ρ
= − ≤ <

−
 (3.10) 

by the uses of Eqs. (3.7) and (3.9) combined with the mean contact 

pressure ( )2
m 0p P aπ=  . Equation (3.10) implies that the contact 

pressure ( )( )( ,0)zp r σ ρ≡ −   has its minimum value at the center of 

contact ( 0ρ = ), and then increases monotonically with the increase in 

ρ  to infinity at the edge of the flat-punch, i.e., at 1ρ = .  
  On the other hand, the displacement ( ,0)zu r   of the free surface 
outside the contact zone ( 1ρ ≥ ), namely the sink-in of the free-surface, 

is described by  

  

1

1

0

2 1( ,0) sin

1 1sin
'

z
hu

P
E a

ρ
π ρ

π ρ

−

−

=

=
 (3.11) 

where use has been made of the relations '( ) 0tχ =  and (1) 2 /hχ π=  

in Eq. (3.8). 

 

3.2 SPHERICAL INDENTER (HERTZIAN CONTACT) 
  The displacement of the surface of an elastic half-space contacted with 

a spherical indenter (radius R) is shown in Fig. 3.3, where the shape 
function ( )f ρ  of spherical indenter is given by  

  
2 2 2

2
2

( )
1 ;
2

f R R a

a a R
R

ρ ρ

ρ

= − −

≈ 
 (3.12) 

We will assume a R  in the following considerations for simplicity.  

In fact, it is well known that the approximation given in Eq. (3.12) is 

sufficient enough for describing the experimental results in the region of 

0.4a R≤ . Hence, by applying the approximation ( ) ( )2 2 2f a Rρ ρ≈  

to Eq. (3.4), we have the following Sneddon’s function ( )tχ ; 

r

z

h

h
c

h
s

a

uz(r,0)

r
0

R

P

 
Figure 3.3 The surface-displacement 

of an elastic half-space indented by a 

sphere (Hertzian contact)  
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2

22( ) at h t
R

χ
π
 

= − 
 

 (3.13) 

Furthermore, the substitutions of Eq. (3.12) into Eq. (3.6) and of Eq. 

(3.13) into Eq. (3.7) lead to the following P - h  relation along with the 
contact stress distribution ( ,0)zσ ρ  of spherical indentation;  

  
212 '

3
aP aE h
R

 
= − 

 
 (3.14) 

  
2

2

2

' (1) 4( ,0) 1 ; 0 1
2 1

z
E a
a R

χσ ρ ρ ρ
πρ

 
= − + − ≤ ≤ 

 − 
 (3.15) 

  As has been mentioned in the preceding section, the contact stress 

( ,0)zσ ρ  of cylindrical flat-punch changes in a discontinuous manner at 

the contact periphery, i.e. ( ),0zσ ρ ↑ −∞   at 1ρ ε= − ( )0ε ↓  and 

( ),0 0zσ ρ ≡   at 1ρ ε= + ( )0ε ↓  . This discontinuity in the contact 

stress is resulted from the discontinuous flexion of the contact surface at 

1ρ = , as depicted in Fig. 3.2, while the free surface of sphere-indented 

elastic body changes continuously from the indented area to the outside 

of the contact, as shown in Fig. 3.3. In addition to this fact, when we 

notice the fact that the surface free-energy, i.e. the surface tension, is 

negligibly small in the indentation contact of an elastic body having 

higher elastic modulus (refer to Chapter 8), the contact stress ( ,0)zσ ρ  

at the contact boundary [ 1= −ρ ε  ( 0↓ε )] is required to coincide with 

the stress ( ) ( ),0 0 1zσ ρ ρ= ≥   of the free surface outside the contact 

zone, leading to 
  (1) 0χ =  (3.16) 

in Eq. (3.15).  The contact radius a   and the contact load P   in 

Hertzian contact problems, therefore, are expressed in terms of the 
penetration depth h , as follows 

  1 2a Rh=  (3.17) 

  3 24 '
3

P E Rh=  (3.18) 

where uses have been made of Eqs. (3.13) and (3.14).  Equation (3.18) 

means that the indentation load P  increases linearly with the increase 

in the penetration depth 3 2h , and the slope of this linear line gives the 
elastic modulus 'E of the elastic body indented. Furthermore, combining 
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Eqs. (3.15), (3.17), and (3.18), the contact stress distribution ( ,0)zσ ρ  

is written by 

  2

m

( ,0) 3 1 ; 0 1
2

z

p
σ ρ ρ ρ= − − ≤ ≤  (3.19a) 

or 

  2

0

( ,0) 1 ; 0 1z

p
σ ρ ρ ρ= − − ≤ ≤  (3.19b) 

in which ( )2
mp P aπ=   and 0 m(3 / 2)p p=   are the mean and the 

maximum contact pressures, respectively.  
  Equation (3.8) combined with Eq. (3.13) describes the sink-in profile

( ,0)zu ρ  of the free-surface outside the contacted area ( 1ρ > ); 

        
( )

( )

2
2 1 2

2

2 1 2
2

1( ,0) 2 sin 1

12 sin 1 ; 1

z
au
R

h

ρ ρ ρ
π ρ ρ

ρ ρ ρ
πρ ρ

−

−

 = − + − 
 

 = − + − ≥ 
 

 (3.20) 

The sink-in depth sh   at the contact periphery (see Fig. 3.3) is 

( )( )s 1,0 2zh u h= =   that is obtained by substituting 1=ρ   into Eq. 

(3.20), resulting in the contact depth c / 2h h= .  The relative contact 

depth ( )c ch hη =  for Hertzian contact is, therefore,  

  c
c

1
2

h
h

η  ≡ = 
 

 (3.21) 

that is independent of the penetration depth h. 

 
3.3 CONICAL INDENTER 
 The surface deformation of an elastic half-space indented by a cone 
with its inclined face-angle of β   is shown in Fig. 3.4. The shape 

function of the indenter is described by  
  ( ) tanf aρ ρ β=  (3.22) 

The Sneddon’s function ( )tχ  in Eq. (3.4) combined with Eq. (3.22) is 

given by 

 
2 2

0

2 1( ) tan

2 tan

t

t h ta dx
t x

h ta

χ β
π

β
π

 
= −  − 

= −



  (3.23) 

When we notice the fact that the boundary value of 

r

z

h
h

c
h

s

a

uz(r,0)

r0

P

β

 
Figure 3.4 The surface displacement 

of an elastic half-space contacted 

with a conical indenter 
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 (1) 2 / tanh aχ π β= −   must satisfy the physical requirement of 

(1) 0χ =   at the contact periphery like as Eq. (3.16) for the Hertzian 

contact, we finally obtain the following relationship between the contact 

radius a and the depth of penetration h;  

  2cota hβ
π

=  (3.24) 

Furthermore, conducting similar mathematical operations that we made 

in the Hertzian contact problem, we have the following key results for 

conical indentation contact; 

 22cot 'P E hβ
π

=  (3.25) 

  1

m

( ,0) 1cosh ; 0 1z

p
σ ρ ρ

ρ
−= − < ≤  (3.26) 

    1 22 1( ,0) sin 1 ; 1z
hu ρ ρ ρ ρ

π ρ
− = − + − ≥ 

 
 (3.27) 

Equation (3.25) means that the indentation load P   increases linearly 

with the increase in the penetration depth 2h , and the slope of this linear 

line gives the elastic modulus 'E  of the body indented. Substitution of 

1ρ =  into Eq. (3.27) leads to the contact depth ( )c 1,0zh u≡   , and then 

yields the relative contact depth ( )c ch hη =  as follows; 

  c
c

2h
h

η
π

 ≡ = 
 

 (3.28) 

As in the case of spherical indentation contact, for the conical indentation 

contact as well, the relative contact depth cη  is always independent of 

the total penetration depth h  . We show in Figs. 3.5 and 3.6 the tip-

geometry dependence of the normalized contact stress distribution

m( ,0) / ; 1z pσ ρ ρ ≤   and the normalized surface displacement 

( ,0) / ; 1zu hρ ρ ≥   plotted against the normalized contact radius 

( )r aρ ≡   for the flat-punch, sphere, and the cone indentations, 

respectively.  

  In the preceding considerations, the experimentally observable 

relations, i.e. the indentation load P vs. the penetration depth h relations, 

have been given in Eqs. (3.9), (3.18), and (3.25) for the respective 

indenter’s tip-geometries.  These P - h  relations are essential in 

 

Figure 3.5 Normalized contact 

stress distributions for flat-ended 

cylindrical punch, spherical, and 

conical indenters  
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experimentally determining the plane-strain elastic modulus 'E  of the 

tested body. It must be noticed in this context that  both Eq. (3.18) 

( 3 2P h∝ ) and Eq. (3.25) ( 2P h∝ ) of spherical/conical indentations do 

not satisfy the linear P - h  relationship although the body tested is 

perfectly elastic.  However, once we introduce the following indentation 

strain Iε , we have the generalized Hook’s law of m I'p E ε=  through 

using the mean contact pressure ( )2
mp P aπ= , where the indentation 

strain Iε  is defined as follows; 
  Flat-ended cylindrical punch: 

   I
0

2 h
a

ε
π
 

=  
 

 (3.29)  

     Spherical indenter：  

   I
4 4

3 3
a h
R R

ε
π π

  = =     
 (3.30) 

  Conical indenter:      

   I
tan

2
βε =  (3.31) 

It must be noticed in these equations that the indentation strain Iε  of 
conical indenter is independent of the penetration depth h , not like the 

flat-punch and the spherical indenter.  This fact is resulted from the 
geometrical similarity of the conical indenter, i.e., the contact radius a  

linearly changes with the penetration depth h  as shown in Eq. (3.24). 

The geometrical similarity of cone/pyramid indenters is, therefore, very 

essential in quantitatively as well as easily determining the material 

characteristics not only in elastic but also in elastoplastic/viscoelastic 

regimes. This is the reason why the cone/pyramid indenters have long 

been conventionally utilized in the history of indentation contact 

mechanics. 

  As mentioned in the preceding considerations, we have the linear 

relation between the mean contact pressure ( )2
mp P aπ=  and the 

indentation strain Iε ; 

   ( )2
m I'p P a Eπ ε= =  (3.32) 

This simple linear relation implies the fact that the indentation contact 
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area 2( )A aπ=   plays a very essential role in the indentation contact 

mechanics not only in the elastic but also in the elastoplastic/ viscoelastic 

regimes, as well.  We will discuss/emphasize in the following chapters 

that the in-situ measurement of the contact area A along with the 

indentation load P is a very essential requisite for quantitatively 

determining the material characteristics in the elastic/elastoplastic/ 

viscoelastic indentation tests. 
  Among the indentation contact responses for various types of tip-

geometry of the indenters discussed in Sec. 3.1-3.3, the most essential 
ones are the P h− , a h− , and the a P−  relations; 

  ' n
hP k E h=  (3.33) 

  ( ) 1

( 1)/

n

n n

a A Bh

cP

π −

−

≡ =

=
 (3.34) 

The parameters denoted in these equations are listed in Table 3.1.  

  

    Table 3.1 List of indentation contact parameters 
 

平坦円柱圧子 球形圧子 円錐圧子

( )f ρ

( ,0) /z mpσ ρ

n

hk

B

/ch h

0

21 2 1 ρ− −

1

02a

0a

1

( )2 22a R ρ

23 1 2ρ− −

3 / 2

4 3R

R

1 / 2

tanaρ β

1cosh (1/ )ρ−−

2

2cot β π

2

/ 2π

/r aρ =*

Iε tan 2β02h aπ ( )4 3 h Rπ

C 0a ( )1/3
1/33

4 ' RE
2cot

'E
β

π

   flat-ended
cylindrical punch spherical indenter conical indenter

2cot β π

2 π

c

ch h

( ) m,0z pσ ρ
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ONSET OF PLASTIC YIELD AND 
      INDENTATION CONTACT PROBLEMS 
 
  Engineering materials including metals and ceramics deform in elastic 

manners under minute strain.  The mechanical work for inducing elastic 

deformation of these materials leads to the increase in the Gibbs free 

energy GΔ  through the increase in the enthalpy HΔ  via the reversible 

deformation of the inter-atomic separation of these materials.  On the 

other hand, the external work applied to organic polymers/rubbers is 
stored by the increase in ( )G T SΔ ≈ − Δ   through the decrease in the 

entropy ( 0)SΔ <   of polymeric chains. Accordingly, the elastic 

deformation of the former materials is referred to as the enthalpic 

elasticity, while the latter is named as the entropic elasticity.  Once the 

loads or the constrained displacements of these elastic bodies are taken 

away, the deformation instantly as well as reversibly disappears, and the 

body recovers to its original shape and size. [1.2, 1.3] 
 Elasticity is, therefore, the characteristic material property of 

immediate recovery of deformation upon unloading, while there exists 

the elastic limit, at which the material experiences a permanent 

deformation (plastic flow) that is not lost on unloading. This is the 

beginning of plastic yielding process, in which the shear slip of atomic or 

molecular planes causes atoms/molecules to move to their new 

equilibrium positions.  The stress-strain curve (S-S curve) of a rod 

undertaken with a simple tension or compression is schematically 

depicted in Fig. 4.1. There is a specific stress Y  at which the S-S curve 

becomes nonlinear.  This specific stress Y  is referred to as the yield 

stress (or yielding stress, yielding strength), and defines the elastic limit, 

beyond which the deformation becomes elastoplastic, meaning that the 

deformation includes not only elastic deformation but also plastic flow as 

well; 
  Yσ ≥  (4.1) 

Equation (4.1) expresses the criterion for the onset of plastic yield for 

tension/compression.  A complete unload from an elastoplastic S-S state 

results in a finite residual strain pε  as shown in Fig. 4.1. The residual 

strain pε  represents the plastic flow that is induced during loading in the 
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Figure 4.1 Stress-strain curve of a 

rod undertaken with a simple tension 

or compression, indicating the onset 

of plastic yielding at the yield stress 

Y  
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plastic region exceeding the elastic limit.  
  Let us now scrutinize the microscopic processes for the onset of plastic 

yield of a metallic single crystal as a representative of elastoplastic body. 

Not only normal but also shear deformations are imposed in the three-

dimensional crystal under externally applied loads, as mentioned in Chap. 

1.  Among these deformations, shear deformation contributes to the 

relative slips of crystalline planes. If the shear deformation is small 

enough, the relative slips are mechanically reversible, leading to the 
elastic shear deformation that is dictated by the shear modulus G  . 

However, once the imposed shear stress τ   crosses over the 

characteristic value of k  termed the yield stress in shear, these shear 

slips become irreversible, and lead to the onset of plastic yield. The 

criterion for the onset of plastic yield in shear, therefore, is written by 
  kτ ≥  (4.2) 

The criterion for the onset of plastic yield under multi-axial S-S states is 

rather complicated not like the simple tension/compression or the shear 

deformation given in Eq. (4.1) or Eq. (4.2); the details will be given in 

the following considerations. 

    

4.1 MAXIMUM SHEAR STRESS CRITERION 
         -TRESCA CRITERION- 
  In a simple tension test of a rod with its axial stress σ , the maximum 
resolved shear stress maxτ   appears on the plane tilted at 45° to the 

applied axial stress, leading to the correlation of max 2τ σ=  . 

Accordingly, the maximum shear stress criterion, i.e., the Tresca criterion, 

leads to the following formula; 

  { }max 2k Yσ ≥ =  (4.3) 

In more general three-dimensional S-S state, the Tresca criterion can be 

written as follows;         

  { }1 2 2 3 3 1max , , 2k Yσ σ σ σ σ σ− − − ≥ =  (4.4) 

where 1σ  , 2σ  , and 3σ   stand for the principal stresses.  In three 

dimensions, as shown in Figs. 1.2 and 1.3, not only normal stresses iσ  

but also shear stresses ijτ   exist on an arbitrary plane. However, as 
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shown in Fig. 4.2, we can find a specific orientation of the coordinate 

system such that no shear stresses appear, leaving only normal stresses in 

its three orthogonal directions. The 1-, 2-, and 3-coordinate axes are 

termed the principal axes, and the planes normal to these axes are named 

as the principal planes.  No shear stresses exist on these principal 

planes except the normal stresses that are termed the principal stresses of 

1σ  , 2σ  , and 3σ  , respectively. In Fig. 4.2, the shear stress τ   on the 

plane encompassed by the white broken lines is induced by the combined 

normal stresses of 1σ   and 2σ  , the maximum shear stress maxτ   of 

which is written by max 1 2 2τ σ σ= −  through a similar consideration 

made in Eq. (4.3). The Tresca criterion for the onset of plastic yield is, 

therefore, given by   

  { }1 2max 2k Yσ σ− ≥ =  (4.5) 

Equation (4.4) is the more generalized extension of Eq. (4.5) in the three-

dimensional S-S state. 

  
4.2 MAXIMUM SHEAR STRAIN ENERGY CRITERION 
             -VON MISES CRITERION- 
  The Tresca criterion is convenient for using it in practical plastic 

analyses, but a somewhat better fit to experimental data of ductile metals 

can often be obtained from the von Mises criterion, on which the onset of 

plastic yield is dictated with shear strain energy.  The elastic strain 

energy density U  stored in a unit cube (see Fig. 1.2 with
1dx dy dz= = = ) under a three-dimensional S-S state is given by  

  
(1 / 2)(

)
x x y y z z

xy xy yz yz zx zx

U σ ε σ ε σ ε
τ γ τ γ τ γ

= + +

+ + +
 

having the physical dimension of J/m3. Applying the elastic constitutive 

equation, Eq. (2.1), to the above formula of strain energy density, we 
finally have the following expressions of U  in terms of only the stress 

components: 

1

2

σ3

σ1

σ2

3

τ

Figure 4.2 Principal axes and 

principal stresses 
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 (4.6) 

In Eq. (4.6), K  stands for the bulk modulus that is related to the Young’s 

modulus with ( )3 1 2K E ν= −   , and the mean normal stress mσ  is 

defined by ( )m 3x y zσ σ σ σ= + + . The first term of the right-hand side 

of the second equation in Eq. (4.6) means the strain energy density 

associated with volumetric change, and the second and the third terms 

represent the shear strain energy density SU  .  As mentioned in the 

preceding considerations and in Fig. 4.2, when we choose the x -、 y-, 

and z -axes as their principal axes, the shear stress components xyτ , yzτ , 

and zxτ  all diminish, then the shear strain energy density SU  can be 

described by the use of the principal stresses of 1σ  , 2σ  , and 3σ  , as 

follows;  

      ( ) ( ) ( ){ }2 22
S 1 2 2 3 3 1

1
6

U
E
ν σ σ σ σ σ σ+= − + − + −  (4.7) 

As an example, when a rod yields at 1 Yσ =   and 2 30σ σ= =   in a 

simple tension test, Eq. (4.7) gives ( ) 2
S(Tension) 1 3U Y Eν= +  .  On 

the other hand, in a pure shear test, the onset of plastic yield occurs at 

1 2 kσ σ= − =  , and 3 0σ =  , then Eq. (4.7) results in

( ) 2
S(PureShear) 1U k Eν= +   (notice that the mean normal stress 

( )1 2 3 3mσ σ σ σ= + +  turns to zero in pure shear, leading to the presence 

of only shear deformations in the body tested).  At the onset of plastic 

yield, the critical strain energy densities both in the simple tension and 

the pure shear tests must agree with each other, i.e., 

( ) ( )S STension PureShearU U=  , resulting in the relationship of 3Y k=  

for the von Mises criterion. These critical strain energy densities are also 

supposed to be equal to Eq. (4.7) in the von Mises criterion, and thus we 

finally have the following general expression for the onset of plastic 
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yield;   

     ( ) ( ) ( ){ }2 22 2 2
1 2 2 3 3 1

1 3
2

Y kσ σ σ σ σ σ− + − + − ≥ =  (4.8) 

Note that this result of 3k Y=  is somewhat different from the Tresca 
criterion with 2k Y= . 

 
4.3 ONSET OF PLASTIC YIELD 
        UNDER SHERICAL INDENTATION CONTACT  
  Let us consider the plastic yield induced beneath the contact surface of 

spherical indentation [4.1].  The onset of plastic yield will appear along 

the penetration axis. i.e., z-axis ( 0ρ =  ), since the principal stresses 

( )1 rσ σ= , ( )2 θσ σ= , and ( )3 zσ σ=  have their maximum values on 

the z-axis for spherical indentation contact in an elastic half-space (see 

Sec. 3.2).  These principal stresses are given in the following equations 

by the uses of Eqs. (2.30) - (2.32), (3.5), and (3.13);  

   ( )
1

2
0 0

1 1(1 ) 1 tan
2 1

r

p p
θσσ ν ς

ς ς
−   ≡ = − + − +    +  

 (4.9) 

  2
0

1
1

z

p
σ

ς
= −

+
 (4.10) 

where 0p  is the maximum contact pressure defined in Eq. (3.19b), and 
z aς =   is the non-dimensional z-coordinate normalized with the 

contact radius a. Furthermore, the maximum shear stress 

max ( / 2)r z= −τ σ σ  (see Eq. (4.5)) is written by  

  

( )

max

0 0

1
2

2

1 1 3(1 ) 1 tan
2 2 1

r z

p p
σ στ

ν ς
ς ς

−

−
=

 = − + − +  + 

 (4.11) 

in which uses have been made of the relations of Eqs. (4.9) and (4.10).  

The analytical result of max 0/ pτ  vs. ( / )z aς =  relation is plotted in 

Fig. 4.3 for the Poisson’s ratio of 0.3ν =  as an example.  Figure 4.3 

actually shows that the shear stress attains its maximum value of

max 00.31pτ =  at 0.48z a=  along the z-axis.  Accordingly, the 

 
Figure 4.3 Distribution of the 

maximum shear stress (Eq. (4.11)) 

along the penetration axis 
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[4.1] K.L. Johnson, “Contact Mechanics”, 
Cambridge University Press (1985) 
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maximum contact pressure ( )0 m3 2p p≡  as the threshold for the onset 

of plastic yield is   
  0 3.2 1.6p k Y≥ = , (4.12) 

for the Tresca criterion ( { }( )max 1 22 max 2k Yτ σ σ≡ − ≥ = ),  

and 
  0 2.8 1.6p k Y≥ =  (4.13) 

for the Von Mises criterion ( { }( )max 1 22 max 3k Yτ σ σ≡ − ≥ = ).  

The preceding considerations combined with the relations of

( )0 m3 2p p= , 2
mp P aπ= , Eq. (3.17) and Eq. (3.18), therefore, finally 

give the threshold Hertzian contact load YP   for the onset of plastic 

yield;   

  ( )
3 2 3

3
Y 21.6

6 '
R YP

E
π= , (4.14) 

meaning that the resistance to the plastic flow increases with the increase 

in 3 2'Y E   for spherical indentation contact (Hertzian contact).  

Namely, Eq. (4.14) implies that the elastoplastic body with a larger yield 

stress and a smaller elastic modulus resists to the onset of plastic flow 

under Hertzian indentation contact. 
  Figure 4.4 (the numerical result of finite element analysis (FEA), the 

details of which will be given in Chap. 10) demonstrates the plastic core 

beneath the contact surface induced at the threshold Hertzian contact load 

YP . As actually predicted in Eq. (4.11) and in Fig. 4.3, the plastic core 

appears at the location of z=0.48a that is clearly seen in Fig. 4.4. 

  

PY

a

0.48a

Figure 4.4 A plastic core appears at 

the location of z=0.48a beneath the 

contact surface under spherical 

indentation (FEA-based numerical 

result with von Mises criterion) 
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ELASTOPLASTIC  
      INDENTATION CONTACT MECHANICS 
 
5.1 MATERIALS PHYSICS  
                     OF THE MEYER HARDNESS 
  The science and engineering of contact plasticity significantly evolved 

with the invention of steam locomotives in the second half of 19th century, 

where the plastic contact deformation induced between the rail and the 

wheel was very critical. In the beginning of 20th century, the concept and 

the test methods of indentation hardness were proposed for characterizing 

the plasticity of metallic materials. The well-known test methods of 

indentation hardness include “Brinell test” (Johan August Brinell, 1900) 

and “Vickers test” (Vickers Ltd., 1925).  In these tests, the hardness H  

is defined as the indentation load P  divided by the total contact area 

S  of the residual impression; 

  PH
S

=  

The details for various types of indentation hardness test are given in the 

Japanese Industrial Standards (JIS) [5.1]. 

  The physics of indentation contact hardness as a material characteristic 

parameter was first examined by E. Meyer in 1908. He defined the Meyer 

hardness MH   as the indentation load P   divided by the projected 

contact area projA  of residual impression; 

  M
proj

PH
A

=  (5.1a) 

He emphasized the importance of projected contact area in determining 

the contact hardness through the theoretical considerations on the 

mechanical processes of spherical/conical indentation. In ductile metals, 

the projected contact area A   at the maximum indentation load 

approximately equals its projected contact area of the residual impression 

projA  , i.e. projA A≅  , because the elastic recovery in unloading is 

negligibly small.  However, in ceramics and organic polymers, due to a 

significant elastic recovery of contact impression during indentation 
unloading, there always exists the relation of projA A>  . Accordingly, 

when we want not only to measure the plasticity, but also to characterize 
the elasticity in an indentation contact test, the use of contact area projA  

[5.1] Examples; 

 JIS Z2243, “Brinell Hardness Test” (2008) 

 JIS Z2244, “Vickers Hardness Test” (2009) 

  JIS Z2245, “Rockwell Hardness Test” (2011)  

 JIS Z2246, “Shore Hardness Test” (2000) 
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of the residual impression we get it after a complete elastic recovery is 

inappropriate.  In-situ measurement of the projected contact area A   

at the indentation load P   is very essential in characterizing the 

elasticity/plasticity of the material indented. In this text, therefore, we 
redefine the Meyer hardness MH   by the use of the projected contact 

area A  at the indentation load P , as follows;  

  M
PH
A

=  (5.1b) 

We use Eq. (5.1b) as the definition of the Meyer hardness, since the 

projected contact area A  under load is very essential for understanding 

the materials physics of indentation contact mechanics, the details of 

which will be discussed in the following chapters. However, upon using 

the conventional instrumented indentation apparatuses, it is impossible in 

experiments for us to determine the projected contact area A   under 

load, though these apparatuses are capable of determining the penetration 

depth h   in relation to the associated indentation load P  . This fact 

implies that we cannot determine in a quantitative manner not only the 

Meyer hardness, but also the material characteristics (elastic modulus, 

yield stress, viscoelastic functions, etc.) on the conventional indentation 

apparatuses. We have to circumvent this difficulty through making an 

appropriate approximation/assumption to estimate A   from the 
observed P - h relation prior to determining the material characteristics.  

The instrumented indentation microscope has been designed to overcome 

this essential difficulty in conventional instrumented indentation testing. 

The indentation microscope enables in-situ measurement of the projected 

contact area A   in relation to the applied indentation load P  .  The 

details (the concept/principle of measurement, the mechanical structure 

of the apparatus, experimental procedure for determining material 

characteristics, etc.) of the indentation microscope will be given in Sec. 

11.3. 

  Let us first consider the Meyer hardness of a perfectly elastic body. The 

Meyer hardness of an elastic body is related to its elastic modulus 'E  
via Eq. (5.2) combined with Eq. (3.32);  

  M I
e

'PH E
A

ε
 

= = 
 

 (5.2) 

where eA  stands for the projected contact area created at the indentation 
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load P   (the subject index “e” means “elastic”), and Iε   is the 

indentation strain that has been defined in Eqs. (3.29) - (3.31).  As 
emphasized in Chap. 3, the indentation strain Iε  depends not only on 

the tip-geometry of the indenter, but also on the depth of penetration for 

flat-ended cylinder and sphere. Once we apply Eqs. (3.29) - (3.31) to Eq. 
(5.2), the MH   vs. 'E   relations for the respective tip-geometries of 

indentation are given as follows; 

  Flat-ended cylindrical punch:  

   M
0

2 'H h E
Aπ

= ⋅  (5.3) 

  Spherical indenter: M e3/2
4 '

3
H A E

Rπ
= ⋅  (5.4) 

  Conical indenter:  M
tan '

2
H Eβ= ⋅  (5.5) 

The Meyer hardness of flat-ended cylindrical punch exhibits a linear 

increase with the increase in the penetration depth h , i.e., MH h∝ , due 

to the invariance of the contact area 0A . In spherical indentation, on the 

other hand, the Meyer hardness depends on the square root of the 

projected contact area or the square root of the penetration, i.e., 

M eH A R h R∝ ∝  .  In contrast to the tip-geometries of these 

indenters, the Meyer hardness of conical indentation, however, is 

independent of the depth of penetration, resulting in a constant value of 

the hardness that is proportional to the elastic nodulus 'E .  This fact is 

very essential in characterizing the mechanical characteristics from the 

Meyer hardness observed in experiments. The geometrical similarity of 

the cone indentation (the linear relation between the penetration depth 

and the contact radius; a h∝  as shown in Eq. (3.24)) actually results in 

the Myer hardness that is independent of the depth of indentation 

penetration. In the history of indentation contact mechanics, this 

geometrical similarity of indentation yields the reason why the cone 

indenter (Rockwell indenter) and the pyramid indenters (Vickers indenter, 

Berkovich indenter) have long been utilized as the standard test methods 

for determining the contact hardness numbers. 
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  Let us now consider the elastic limit and the onset of plastic yield that 
appears when the indentation strain Iε  increases to its threshold value 

of IYε   (see Fig. 4.1). The indentation strain Iε   increases with the 

increase in the penetration depth h  of a flat-ended cylindrical punch or 
a spherical indenter.  It is also possible for us to increase Iε  by the use 

of a spherical indenter with smaller radius R , or a conical indenter with 
larger inclined face angle β .  When Iε  reaches to it threshold value 

of IYε , the plastic core appears beneath the contact surface, as shown in 

Fig. 4.4 for a spherical indentation by way of example. The Meyer 
hardness at the threshold strain IYε  is given by  
  ( )M IY 'H E Yε= ≈ , (5.6) 

as has been suggested both in the Tresca and in the von Mises criteria (see 

Eqs. (4.12) and (4.13)). In other words, the plastic yield is resulted in 
when the elastic Meyer hardness I 'Eε  (Eq. (5.2)) increases up to the 

yield stress Y . 

  Most of ductile materials fall into the category of perfectly plastic body 

(fully plastic body), once the plasticity overwhelms the elasticity in the 

indentation-induced deformation.  The Meyer hardness of a fully plastic 
body is independent of the indentation strain Iε , and described by  

  M
p

PH cY
A

 
= =  
 

 (5.7) 

in which pA  means the projected contact area of indentation (the subject 

index “p” stands for plasticity). The major of plastic deformation induced 

beneath the indentation contact surface is accommodated in the elastic 

field surrounding the plastic core of indentation.  However, when the 

plastic deformation becomes so significant that the surrounding elastic 

field becomes insufficient for accommodating this plastic deformation, 

the excess of the in-surface plastic deformation flows out to the free 

surface, resulting in the indentation pile-up. On the other hand, the 

surface energy (i.e., the surface tension) of the free surface constrains this 
plastic flow-out. The constraint factor c  in Eq. (5.7) thus describes the 

constraint resistance to the plastic flow-out. The constraint factor c  is 

not only dependent on the tip-geometry of the indenter used, but also on 

the contact friction. The experimental results along with the FEM-based 
numerical analyses suggest that the constraint factor c ranges from 2.5 
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to 3.5, i.e., 2.5 3.5c≤ ≤  [4.1]. 

  The elastoplastic deformation induced with indentation contact can 

therefore be divided into the following three regions [4.1]: 
  MH Y< ：   elastic region  (5.8a) 

    MY H cY≤ < : elastoplastic region (5.8b) 

    MH cY≈ :    fully plastic region (5.8c) 

Since the Meyer hardness is described by M I 'H Eε=  (see Eq. (5.2)) in 

the elastic region ( M 1H Y < ), Eq. (5.8a) can be rewritten with  

    I ' 1E
Y

ε
<    (5.9) 

       I
0

2 h
a

ε
π

= ；flat-ended cylindrical punch 

       I
4

3
a
R

ε
π

= ；spherical indenter 

       I
tan

2
βε = ；conical/pyramidal indenter  

Namely, the deformation of an elastoplastic body having the elastic 

modulus of 'E   and the yield stress of Y   is always perfectly elastic 
when the indentation strain Iε  applied to the body satisfies I ' 1E Yε <

(elastic region). Accordingly, in the elastic region, the Meyer hardness is 

a material characteristic parameter for representing the elastic modulus 
'E , i.e., M I 'H Eε= .  On the other hand, the Meyer hardness represents 

the yield stress Y  , i.e., MH cY=   in the fully plastic region 

( I ' 20E Yε > ), while in the elastoplastic region ( I1 ' 20E Yε< < ), it is 

an elastoplastic parameter given as a function of 'E  and Y , the details 

of which will be given in the followings. 

 

(1) Cavity model [4.1] 

 Figure 5.1 shows the cavity model of the Meyer hardness, where a cone 

indenter with the inclined face angle β  (see Fig. 3.4) is pressed onto 

the free surface of an elastoplastic half-space with the elastic modulus 

'E   and the yield stress Y  .  The cavity model comprises (i) a hemi-

spherical cavity of radius a with the internal hydrostatic contact pressure, 

( )2/mp P a= π , (ii) a plastic core ( a r b< ≤ ) with radius b surrounding 

the cavity, which is embedded in (iii) an elastic half-space ( r b> ).  The 

P

pm

b a

plastic

elastic

•

Figure 5.1 Cavity model of an 

elastoplastic indentation contact by a 

cone; the model comprises a hemi-

spherical cavity of radius a with 

internal hydrostatic contact pressure 

( )2
mp P aπ= . The cavity is 

surrounded by a plastic core with 

radius b embedded in an elastic half-

space 
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volume of the cavity ( ( ) 32 3 aπ≡ ) stands for the excluded volume of 

indentation.  The materials (atoms and molecules) thus excluded from 

the cavity is assumed to be accommodated in the elastic half-space 

through the plastic core. In the cavity model, therefore, the indentation 

contact mechanics is simply reduced to the elastoplastic continuum 

mechanics of a semi-infinite elastic half-space with a surface cavity of 

radius a that is surrounded by a plastic core of radius b, where the cavity 

is subjected to the hydrostatic pressure of mp . The cavity model finally 

gives the following formula for the Meyer hardness, 

( ) 2
M mH p P aπ≡ =  [4.1]:  

  M
I

2 (1 ) ' 2(1 2 )2 ln
3 3 3(1 )

H E
Y Y

ν νε
ν

  + −= + +  −  
 (5.10a) 

Equation (5.10a) is simply rewritten by 

 M
I

2 1 '2 ln
3 2

H E
Y Y

ε  = +     
 (5.10b) 

for incompressible elastoplastic body with 1 2ν = . It must be noticed 

that the cavity model can describe the indentation contact behavior only 

in the elastoplastic region (Eq. (5.8b)).  The model neither can be 

applied to the elastic region (Eq. (5.8a)), nor to the fully plastic region 

(Eq. (5.8c)).  In the subsequent section, we will introduce a unified 

theory that is fully capable of describing the Meyer hardness from the 

perfectly elastic to the fully plastic regions.  

 
(2) Unified theory of the Meyer hardness: 
     The additivity principle of the excluded volume of indentation 

  The theory describes the Meyer hardness MH  in terms of the elastic 

modulus 'E  and the yield stress Y  as a function of the tip-geometry 

of indentation in a unified manner that encompasses the elastoplastic 

Meyer hardness ranging from perfectly elastic to fully plastic indentation 

contacts. Since the theory is based on a phenomenological principle, i.e., 

a thermodynamic principle, any of elastoplastic models can be adopted. 

In this textbook, we apply an energy-based consideration to the preceding 

cavity model. Let us consider the virtual increment of the Gibbs free 
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energy Gδ  that is associated with the virtual increment of the excluded 

volume Vδ   under the virtual increment of the contact pressure from 

( )2/mp P aπ≡  to mp p+ δ  acting on the internal surface of the cavity. 

The increment of the free energy, i.e., the externally applied work 

( )W Gδ δ≡  is, therefore, given by  

  ( )m m e m pW p V p V p Vδ δ δ δ≡ = +  (5.11) 

where the higher-order term of p Vδ δ⋅  is assumed to be negligibly small. 

In Eq. (5.11), eVδ  and pVδ  are the volumetric increments associated 

with the elastic and plastic indentation deformations, respectively. The 

first term ( m ep Vδ  ) in the right-hand side of Eq. (5.11) stands for the 

elastic stored energy, and the second term ( m pp Vδ  ) is the energy 

dissipation associated with plastic flow. 
  Equation (5.11) is thus rewritten by e pV V Vδ δ δ= + , and then finally 

we have the additivity principle of excluded volume of indentation as 

follows;   
  e pV V V= +   (5.12) 

Let us consider the alternative expression of this additivity principle in 

terms of the contact area A. Since the excluded volume V is related to the 

contact area A via ( ) 3 2tan 3V Aβ π= ⋅  for cone/pyramid indentation 

(inclined face-angle of β  ), and to ( ) 21 6V R Aπ= ⋅   ( 1a R   ) for 

spherical indentation (radius of R), there exists the relation of mV A∝  

( 3 2m =   for cone/pyramid indenter; 2m =   for spherical indenter). 

The additivity principle of the excluded volume, therefore, finally results 

in the following formula of the contact area A ; 

  e p
m m mA A A= +   (5.13a) 

or 

  ( )
( )

1/

p ep

p e

/

1 /

mm

m

A AA
A A A

 
 =  +  

 (5.13b) 

In these equations, A  is the contact area of an elastoplastic body (elastic 

modulus 'E  and yield stress Y ) generated by the indentation load of 

P . eA  and pA  are, respectively, the contact areas of a perfectly elastic 
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body with the elastic modulus 'E  and of a fully plastic body with the 

yield stress of Y ; both are created by the same indentation load P  and 

the same tip-geometry of the indenter applied to the elastoplastic body.  

Substituting MA P H=   (Eq. (5.1b)), e I 'A P Eε=   (Eq. (5.2)), and 

pA P cY=  (Eq. (5.7)) into Eq. (5.13b), we can express the elastoplastic 

Meyer hardness MH  in terms of the elastic modulus 'E  and the yield 

stress Y , as follows; 

  

1
I

M

I

'

'1

mm

m

E
H cY
cY E

cY

ε

ε

    
  =    +     

 (5.14) 

 
    3 2m = ;    conical indenter 

    2m =   ;    spherical indenter 

It should be emphasized that Eq. (5.13b) is equivalent to Eq. (5.14), 

though these equations are expressed in somewhat different ways. 

Equation (5.13b) plays an important role in determining the elastoplastic 

material characteristics, once we directly measure the P - A  relation in 

experiments by the use of the “instrumented indentation microscope” 

(refer to the details in Chap. 11).  The elastoplastic parameter 

( )I p e'E cY A Aε ≡  in Eq. (5.14) represents the relative ratio of plastic 

to elastic deformation, namely, describes the amount of plastic 

deformation relative to the elastic deformation.  In this text book, 

therefore, we define it as the plastic index, PI ; I 'E cYPI ε= . 
  The comparison between the cavity model (Eqs. (5.10a), (5.10b)) and 

the unified theory of volumetric additivity (Eqs. (5.13b), (5.14)) is shown 

in Fig. 5.2. As emphasized in the preceding considerations, the cavity 

model is applicable only in the elastoplastic region, while the additivity 

principle analytically predicts the elastic/plastic indentation contact 

encompassing the all ranges from perfectly elastic to fully plastic 

deformation.  As recognized in Fig. 5.2 and in Eq. (5.14), the 

elastoplastic contact behavior depends not only on the elastoplastic 
characteristics 'E cY , but also on the tip-geometry of the indenter used 

(spherical, conical indenters, etc.) via Iε  . The elastoplastic contact 

Figure 5.2 The relation between the 

normalized hardness and the plastic 

index.  The unified theory of 

volumetric additivity (Eqs. (5.13b) 

and (5.14)) is given by the solid 

(spherical indentation) and the 

broken (conical indentation) lines. 

The Johnson’s cavity model (Eq. 

(5.10)) is given by the dashed-dotted 

line. 
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behavior is, therefore, classified in terms of the plastic index PI, as 

follows;   
     perfectly elastic region:  <0.2PI   sphere; cone 

    elastoplastic region:    0.4 <8PI≤   sphere 

            0.4 <20PI≤  cone 

    fully plastic region:    8PI ≥     sphere 

          20PI ≥    cone 

  The validity and the reliability are scrutinized in Fig. 5.3 for the 

additivity principle of the excluded volume of indentation, where the 

analytical predictions of the volumetric additivity principle (the solid and 

the broken lines) are compared with the finite-element-based numerical 

results (the triangles and circles).  As clearly seen in Fig. 5.3, the 

analytical results based on the principle of volumetric additivity faithfully 

as well as precisely predict the FEA-based numerical results not only for 

spherical but also for conical indentation contacts.  

 

(3) Elastoplastic deformation and flow of cone/pyramid indentation 

 As mentioned in the preceding sections, due to the geometrical 

similarity of cone/pyramid indentation, the Meyer hardness is 

independent of the penetration depth, leading to the relation of 
2 2

MP H A a h= ⋅ ∝ ∝  . Accordingly, it will be easily expected in 

cone/pyramid indentation that the indentation load P  is proportional to 

the square of penetration depth 2h  , i.e., the indentation load linearly 

increases with the increase in 2h . Figure 5.4 shows the numerical results 

of finite element analysis (FEA); the P  - 2h   hysteresis relations are 

demonstrated for the perfectly elastic (PI (= I 'E cYε  )=0.05) , 

elastoplastic (PI=1.0), and the fully plastic (PI=20) bodies in their 

loading/unloading cycles of the Vickers/Berkovich equivalent cone 

indentation.  In all ranges of the perfectly elastic to the fully plastic 

indentation contact, the loading P  - 2h   relations (the solid lines) are 

linear. It should be noticed, as shown in Fig. 5.4, that the subsequent 

unloading P - 2h  relations (the broken lines) are also linear; the loading 

linear P - 2h  line coincides with the subsequent unloading  linear lines 

for the perfectly elastic body with PI=0.05.  The slopes of 

Figure 5.4 P  - 2h   hysteresis 
relations of the elastic (PI=0.05), 
elastoplastic (PI=1.0), and the fully 
plastic bodies (PI=20) in their 
loading/unloading cycles of the 
Vickers/Berkovich equivalent cone 
(FEA-based numerical results). The 
solid and the broken lines indicate the 
loading and the subsequent 
unloading P - 2h  relations, 
respectively.  
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loading/unloading P  - 2h   linear relations are intimately related to the 

material characteristic parameters of the Meyer hardness MH  , elastic 

modulus 'E , and the yield stress Y , the details of which will be given 

in the subsequent chapters. 

  Outside the contact area of indentation, the free-surface of an elastic 

half space always sinks-in along with the penetration, i.e., 

( )c c 1h hη ≡ <  .  As discussed in Chap. 3, ( )c c 1 2h hη ≡ =   for 

spherical indentation, and ( )c c 2h hη π≡ =   for conical indentation 

(refer to Figs. 3.3 and 3.4; Eqs. (3.21) and (3.28), and Table 3.1).  On 

the other hand, due to a significant plastic deformation of elastoplastic 

indentation contact (PI>0.4), the indentation-displaced molecules/atoms 

beneath the contact area flow out to the free-surface, resulting in a pile-

up outside the contact area, i.e., ( )c c 1h hη ≡ >  .  The FEA-based 

numerical results of the relative contact depth ch h   under load are 

plotted against the plastic index ( )I 'PI E cYε≡   in Fig. 5.5 for the 

Vickers/Berkovich equivalent cone, where the transition from sinking-in 

to piling-up occurs at about PI=6.  Figure 5.6 shows the side views of 

the surface profiles outside the contact area of the equivalent cone at the 

penetration depth of h=5μm under load (the right-hand half in Fig. 5.6), 

and the profiles of residual impression after unloading (the left-hand half 

in Fig. 5.6); the profiles are of PI=0.318, 3.18, and 31.8, respectively. As 

well recognized in Fig. 5.6, in the elasticity-dominant region of PI<3, the 

elastic recovery along the penetration axis is very significant in unloading. 

Furthermore, it should be noticed that the threshold value of plastic index 

PI at the sink-in/pile-up crossover is about PI=6 under load in Fig. 5.5, 

while it is about PI=3 after unload shown in the left-hand half of Fig. 5.6; 

this significant discrepancy is resulted from the enhanced pile-up 

associated with the elastic recovery in unloading. 
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Figure 5.6 The side views of the 

surface profiles outside the contact 

area of the Vickers/Berkovich 

equivalent cone for the elastoplastic 

bodies with three different values of 
the plastic index I '/PI E cYε= . The 

right-hand half is the side views at 

the penetration depth h=5μm, and the 
left-hand half is the profiles of 

residual impressions after unload 
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***** Tip-Geometries of  
Vickers/Berkovich Indenters ***** 

 
The Vickers indenter was designed to circumvent the 

inconvenience of the Brinell’s spherical indenter, the hardness of 

which is always dependent on the penetration depth. As shown in 

Fig. 5.7, the inclined face-angle of the Vickers indenter is designed 

to be 22.0β =   , being consistent to the including face-angle of 
sphere at 0.375a R =   of the standard Brinell hardness test 

condition.  On the other hand, the geometry of the trigonal 

Berkovich indenter is designed with the inclined face angle of 

24.7β =  , resulting in the same excluded volume of the Vickers 

indentation. A conical indenter having the inclined face-angle of 

19.7β =   is called as the Vickers/Berkovich equivalent cone, the 

excluded volume of which coincides with that of 

Vickers/Berkovich indenters.  The details of the equivalent cone 

will be given in Chap. 11 

R

a β

β

β

( sin ) 0.375 22.0a
R

β β= = = °

Figure 5.7 Tip-geometry of the 

Vickers indenter designed to be 

consistent with the Brinell indenter 

44



5.2 THE P-h LOADING/UNLOADING  
   HYSTERESIS CURVE OF CONICAL INDENTATION  
  The P  - h   relationship of a perfectly elastic body ( 0.2PI <  ) for 

conical indentation contact is given in the following equation by 

substituting the elastic contact area ( )2 2
e e cotA hπ η β=  into Eq. (5.2);  

  
( )

( )
2

I e e

2 2
e e I

'

cot '

P E A k h

k E

ε

πη β ε

≡ =

=
 (5.15) 

in which ( )e c 2h hη π≡ =  is the relative contact depth of the elastic 

body.  
  For a fully plastic body ( 20PI ≥ ), on the other hand, Eq. (5.7) leads to 

the following P - h  relationship; 

  
( )

( )
2

p p

2 2
p p cot

P cYA k h

k cYπη β

≡ =

=
 (5.16) 

In Eq. (5.16), pη   denotes the relative contact depth ch h   of a fully 

plastic body, the value of which is p 1.2η ≈  as shown in Fig. 5.5.  The 

P - h  relation of an elastoplastic body with its plastic index PI ranging 

from 0.2 to 20 is given in Eq. (5.17) in terms of the Meyer hardness MH ; 

  
( )

( )
2

M ep

2 2
ep ep Mcot

P H A k h

k Hπη β

≡ =

=
 (5.17) 

In Eq. (5.17), the subscript “ep” stands for “elastoplastic”, and the relative 
contact depth epη  changes in the range of ep2 1.2π η< < , depending 

on the plastic index PI (refer to Fig. 5.4). 

  Figure 5.8 shows the loading-unloading P  - h   hysteresis curves 

(Berkovich indentation) of silicon nitride ceramic (Si3N4), soda-lime 

glass (Glass), and metallic copper (Cu) as the representatives of 

engineering materials exhibiting various elastoplastic behaviors, i.e., 

having the different PI -values. 

 The loading-unloading P - h linear hysteresis is plotted in Fig. 5.9 
of the Si3N4 ceramic that has been demonstrated in Fig. 5.8. The 

considerations on Fig. 5.4 combined with Eqs. (5.15) – (5.17) lead to the 

relation of 2P h∝  or P h∝  both in the loading and in the unloading 
processes due to the geometrical similarity of cone/pyramid indentation.  
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Figure 5.8 The P  - h   loading- 

unloading hysteresis curves of three 

engineering materials with different 

elastoplastic behavior (Berkovich 
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Figure 5.9 The loading-unloading  

P - h linear plot of Si3N4 ceramic, 
the P  - h   hysteresis of which is 

plotted in Fig. 5.8 
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The indentation loading process is described by Eq. (5.17), and the 

subsequent unloading process is well approximated by  

  
( ) ( )

( )
2

I e e r

2 2
e e I

'

cot '

P E A k h h

k E

ε

πη β ε

≡ = −

=
 (5.18) 

like as Eq. 5.15 for the P - h  relation of perfectly elastic body since the 

unloading process of any elastoplastic body is essentially resulted from 

the elastic recovery of the indentation contact impression. In Eq. (5.18) 
and in Fig. 5.9, rh   denotes the residual depths of contact impression 

formed after a complete unload.  

   The subsequent unloading P  - 2h   linear line of a perfectly elastic 

body overlaps with the preceding loading P - 2h  line (refer to the P -
2h   loading-unloading relations for PI =0.05 in Fig. 5.5), resulting in 

none of P  - h   hysteresis phenomenon. This fact implies that the 

external work applied to the system is completely released during the 
elastic recovery in unloading.  The change of Gibbs free energy GΔ of 

the system, therefore, is zero in this loading-unloading mechanical cycle. 

In contrast to the elastic indentation process, the hysteresis loop areas 

enclosed with the loading and the unloading curves demonstrated in Figs. 

5.5, 5.8, and 5.9 stand for the plastic energy that dissipates to the outside 

of the system as a heat flux during indentation loading-unloading 

mechanical cycle (note: the hysteresis loop energy may partly include the 

elastic strain energy stored in the field surrounding the residual 

impression).  

  The energy diagram associated with the indentation loading- unloading 

processes of an elastoplastic body is depicted in Fig. 5.10.  The external 
work TU   applied to the system in the loading process up to its 

maximum indentation load maxP  is described by  

  T r eU U U= +   (5.19) 

as a sum of the loop energy (the plastic energy dissipation) rU  and the 

elastic strain energy eU   .  Using Eqs. (5.17) and (5.18), we finally 

have the following expressions for the energies of TU  and eU ;  

  max ep 3
T max0 3

h k
U Pdh h= =  (5.20) 

  ( )max

r

33e
e max r1

3
h

h

kU Pdh h ξ= = −  (5.21) 

hr he

Ur Ue

UT=Ur+Ue

Pmax

hmaxhr
Figure 5.10 Energy diagram for 

the indentation loading- unloading 

process.  
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where rξ  means the relative residual depth defined by r r maxh hξ = .  

The plastic energy dissipation rU  is, therefore, related to the externally 

applied work TU  as follows;  

  ( )r T e r TU U U Uξ≡ − =   (5.22) 

In the derivation of Eq. (5.22), we have utilized the compatibility relation 

of ( )22
ep max e max rk h k h h= − , or ( )2

ep e r1k k ξ= − , due to the fact that 

the loading curve crosses the unloading curve at the coordinate of ( maxh , 

maxP ).   
 

(1) Work-of-Indentation, WOI 
 The work-of- indentation WOI is defined as the externally applied 

work to create a unit volume of residual impression;  

 r

r

UWOI
V

=   (5.23) 

where rV  means the volume of residual impression. Substituting Eqs. 

(5.17), (5.20), and (5.22) into Eq. (5.23) and noticing the approximations 

of ( )2 3
max maxcot 3V hπ β≈   and r r maxV Vξ≈   finally give the 

following important conclusion that the work-of-indentation WOI is 

equivalent to the Meyer hardness:  

  ( )r r T max

M

WOI U V U V
H

≡ ≡
=

 (5.24) 

In other words, the Meyer hardness MH   that has been historically 

defined as the indentation load divided by the contact area MH P A=  

(see Eq. (5.1b)) is re-defined in this context as the plastic energy 
dissipation to create a unit volume of residual impression r rU V , or the 

externally applied work to create an indentation-excluded unit volume 

T maxU V . 

  The one-to-one correlation between the Meyer hardness MH  and the 

work-of-indentation WOI   is shown in Fig. 5.11 for the elastoplastic 

materials having their material characteristics of the elastic modulus 

10E =  GPa, and the yield stresses ranging 0.1GPa 3GPaY≤ ≤  , all 

being the numerical results examined in a finite element analysis (FEA). 

 

 

 
Figure 5.11 One-to-one correlation 
between MH   and WOI of the 

elastoplastic materials having the 
elastic modulus of 10E =  GPa and 

the yield stress ranging 

0.1GPa 3GPaY≤ ≤   (FEA-based 

numerical results) 
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(2) Correlation between the loop energy rU   

                                and the yield stress cY  

 As discussed in the preceding section, the loop energy rU   of an 

elastoplastic body defined by the area enclosed by the indentation 

loading-unloading hysteresis curve stands for the heat dissipation 

associated with the plastic flow in the indentation contact process. 

Accordingly, the elastoplastic loop energy rU   will nearly equal the 

plastic energy dissipation pU  of a fully plastic body having the same 

yield stress Y  as that of the elastoplastic body, where the plastic energy 

dissipation pU  can be given through integrating the P - h relation of Eq. 

(5.16); 

  ( )p p 3
p p0 3

h k
U Pdh h≡ =  (5.25) 

The elastoplastic and the fully plastic loop energies rU   and pU   are 

depicted in Fig. 5.12 for comparison. As shown in the figure, the relations 

of r pU U≈   and p rh h≈   exist under the same maximum indentation 

load, since both of the elastoplastic and the fully plastic bodies have the 

same yield stress Y , resulting in the following unique expression that 

correlates the elastoplastic loop energy rU   with the yield stress Y  

through the following linear relation of rU  vs. 3/2P ; 

  ( )
3/2 3/2

r p
p p

tan
3 3
P PU U

k cY
β

η π
≈ = =  (5.26) 

We can, therefore, determine the yield stress cY  from the slope of the 

observed linear rU  vs. 3/2P  plot as well demonstrated in Fig. 5.13 for 

the several engineering materials (Vickers indentation) [5.2]. 
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[5.2] M. Sakai, Acta Metall.   
           Mater., 41, 1751 (1993) 

Figure 5.13 rU  - 3/2P   linear plots (Vickers indentation 

test results). These linear plots are, respectively, for 

metallic aluminum, metallic copper, magnesium oxide, 

silicon nitride, silicon carbide, and for glass-like carbon, 

from the top to the bottom. The slope of the respective 

linear plot gives the yield stress cY  (see Eq. 5.26) 
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Figure 5.12 The loop energy rU  of 

an elastoplastic body and the plastic 

energy dissipation pU   of a fully 

plastic body, both having the same 

value of the yield stress Y  .  There 

exist the approximations r pU U≈  

and p rh h≈ under the same maximum 

indentation load of maxP  
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LINEAR VISCOELASTIC FORMULATION 
 
6.1 GLASS TRANSITION BEHAVIOR AND               
                       VISCOELASTIC RESPONCE 
 
(1) Glass Transition Behavior [6.1, 6.2] 
  The mechanical responses of elastic and elastoplastic bodies are 

independent of the time as well as of the rate of deformation/load applied 

to the system. These mechanical responses instantaneously onset once the 

stress/strain is applied to the system. Furthermore, the system does not 

show the time-dependent relaxation phenomena and the creep 

deformation against a stepwise application of stress/strain. On the other 

hand, amorphous materials including organic polymers, inorganic glasses, 

etc., exhibit time/rate-dependent mechanical responses at temperatures 

above their glass transition point.  These materials fall into the group of 

viscoelastic materials.  

  The volumetric change of an amorphous body is shown in Fig. 6.1 

against the temperature in comparison to that of a polycrystalline body 

such as a metallic body. Most of liquids including molten metals show a 

discrete change in their volumes at their freezing point (crystalline point) 

associated with cooling, and turn to the crystals, as shown in Fig. 6.1. 

Since this volumetric change goes through a thermodynamically 

equilibrium process, the resultant crystal reversibly turns to liquid at the 

melting point (Tm) with a discrete volumetric dilation on heating. On the 

other hand, molten organic polymers and inorganic glasses change to 

glass-like amorphous solids in their cooling processes through the glass 

transition region without any discrete volumetric changes, as shown in 

Fig. 6.1, where the glass-transition temperature (glass-transition point) Tg 

as a material characteristic temperature is defined at the intercepting 

temperature between the liquid and the solid lines with the associated 

upper- and lower-temperatures, TU and TL, respectively. The glass-

transition behavior is thermodynamically irreversible, resulting in these 

characteristic temperatures of Tg, TU, and TL dependent on the 

cooling/heating rate; these temperatures shift to lower for larger the 

cooling rate, and vice versa.  
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Figure 6.1 Volumetric changes of 

crystalline and amorphous bodies in 

the cooling/heating cycle, and their 

characteristic temperatures of TL, Tg, 

TU, and Tm.  

[6.1] E.J. Donth, “The Glass Transition: 
    Relaxation Dynamics in Liquids and   
    Distorted Materials”, Springer (2001) 
[6.2] G.W. Scherer, “Relaxation in Glass 
    and Composites”, John Wiley (1986) 
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(2) Viscoelastic Models: Maxwell Liquid and Zener Solid 
  As mentioned in the preceding section, the mechanical responses of 

amorphous bodies are time/rate-dependent viscoelastic. The Maxwell 

model and the Zener model shown in Fig. 6.2 are the most common for 

describing in a phenomenological manner the viscoelastic behaviors of 

amorphous bodies in its glass-transition region.  The Maxwell model 

comprises a Hookean spring (the elastic modulus EM) and a Newtonian 

dashpot (the viscosity η) connected in series.  The spring visualizes the 
elastic deformation, while the dashpot represents the viscous flow. The 

Maxwell model is the simplest for describing a viscoelastic liquid. On the 

other hand, the simplest models for representing viscoelastic solids 

include the Zener models of I and II. The Zener model I comprises a Voigt 

model placed in series with a Hookean spring (the elastic modulus Eg), 

where the Voigt model is given by a parallel combination of a spring (the 

elastic modulus EV) and a dashpot (the viscosity η).  The parallel 
combination of a Maxwell model and a Hookean spring (the elastic 

modulus Ee) leads to the Zener model II [1.3].  

  The mechanical response of a Hookean spring is given by  

   Eσ ε=  
In a dashpot, the stress produces not a strain ε  but a strain rate d dtε  

as follows:   

  d
dt
εσ η=  

In many of the following considerations, it will be convenient to 
introduce the ratio of viscosity η (Pa･s) to stiffness E (Pa);  

  
E
ητ =  

The unit of τ  is time (s), and it will be seen that this characteristic time 

plays an important role in describing the material’s viscoelastic response; 
τ  is referred to as the relaxation time in stress relaxation phenomena, 

and as the retardation time in creep deformation.  
 The mechanical responses of the viscoelastic liquid/solid models 

shown in Fig. 6.2 are generally described with the following linear first-

order differential equation;   

  0 1 0 1
d da a b b
dt dt
ε σε σ+ = +  (6.1) 

Maxwell model

Zener model I

Zener model II

° °

ηME

η

VE
gE

η ME

eE

Figure 6.2 The Maxwell model to 
represent a viscoelastic liquid and the 

Zener models for describing 

viscoelastic solids 
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in which the coefficients are 

 ( )

0

1

0 M M

1 M

0
1
1 1
1

a
a
b E
b E

η τ

=
=
= =
=

 (6.2a) 

for the Maxwell model,   

 

( )

( )

0 V V

1

0 g V V g

1 g

1
1

1

1

a E
a

b E E E

b E

η τ

τ

= =
=

= +

=

 (6.2b) 

for the Zener I model, and 

 

( )

( )
( )

0 e M e M

1

0 M e M

1 e M

1

1

1

a E E E

a

b E E

b E E

τ

τ

 = + 
=

 = + 
= +

 (6.2c) 

for the Zener II model. The Zener I model with V 0E =  and g ME E= , 

or the Zener II model with e 0E =  is reduced to the Maxwell model.  

In Eqs. (6.1) - (6.2c), the subscript “g” of gE , and “e” of eE  stand for 

the “glassy modulus” and the “equilibrium modulus”, respectively.  

  The Laplace transform is very effective in solving linear differential 

equations like as Eq. (6.1), the mathematical details of which are given 

in APPENDIX C. The Laplace transform of a function ( )f t  in the time-

space of 0t ≥  is denoted here as ( )( ) ( )f t f p≡L , and is defined by 

  ( ) ( ) ( )
0

ptf t f p f t e dt
∞ −= = L  

where p is a nonnegative real parameter with the unit of inverse time (1/s) 

termed the transform parameter.  Applying Laplace transform to both 

sides of Eq. (6.1) turns the differential equation to the following algebraic 

equation;  
  ( ) ( ) ( )*p E p pσ ε=  (6.3a) 

where ( )*E p  is referred to as the pseudo elastic modulus define by  

  0 1

0 1

*( ) a a pE p
b b p

+
=

+
 (6.4) 
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By way of example, the pseudo elastic modulus * ( )E p   of the 

viscoelastic Maxwell liquid is written by 

  M

M

*( ) 1
EE p p

p
τ

= ⋅
+

 (6.5a) 

through substituting Eq. (6.2a) into Eq. (6.4). In a similar mathematical 

substitution of Eq. (6.2b) or Eq. (6.2c) into Eq. (6.4), we finally have  

  

( )

g
V

Z Z

Z e g V e g V

1 1* ( ) 1 1

; 1 1 1

pE p E
p p

E E E E E

τ
τ τ

τ τ

 
 
 = +
 + + 
 

= = +

 (6.5b) 

for the Zener I viscoelastic solid, and  

         
e g

g
M

M M

g e M

1* ( ) 1 1
E E pE p E

p p

E E E

τ
τ τ

 
 
 = +
 + + 
 

= +

 (6.5c) 

for the Zener II viscoelastic solid. 

  As readily seen in Eqs. (6.5b) and (6.5c), their mathematical 

expressions are formally the same, though the respective coefficients 

describing their ( )*E p -values are different. As a matter of fact, both of 

the models I and II coincide with each other, and their viscoelastic 

responses become equivalent when we substitute the relations of 

e g M VE E = τ τ  and M Zτ τ=  into the Model II.   
  The mathematically conjugated formula of Eq. (6.3a) 
  ( ) ( ) ( )*p C p pε σ=  (6.3b) 

defines the pseudo compliance *( )C p  that is related to ( )*E p  with 

( )*( ) 1 *C p E p= . As shown in Eqs. (6.3a) and (6.3b), it will be worthy 

of note that the formulas of linear viscoelastic constitutive equations 
( ) * ( ) ( )p E p p=σ ε   and ( ) * ( ) ( )p C p p=ε σ  in the Laplace space 

are equivalent to those of linear elastic constitutive equations Eσ ε=  

and Cε σ=   in the real space. Furthermore, there exists one-to-one 

correspondence of 1C E=  and  * ( ) 1 * ( )C p E p=  in the real and 

the Laplace spaces. This one-to-one correspondence is named as “The 

Elastic-Viscoelastic Correspondence Principle” [1.2, 1.3], playing an 

 
Figure 6.3 Relaxation modulus and 

creep compliance (Maxwell model): 
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essential role in formulating the viscoelastic indentation contact 

mechanics, the details of which will be discussed in the later chapters.   

  Let us now consider; (i) the stress relaxation under stepwise strain and 

(ii) the creep deformation for stepwise loading in order to make further 

understanding the viscoelastic responses of the Maxwell liquid and the 

Zener II solid.  

 

(i) Stress relaxation under stepwise strain 
 The stepwise application of a constant value of strain 0ε   to the 

system can be mathematically made by  

  0

0, 0
( ) ( ), ( )

1, 0
t

t u t u t
t

ε ε
<

= =  ≥
 (6.6) 

using the Heaviside step function ( )u t  . Accordingly, substituting the 

Laplace transform of Eq. (6.6), i.e., 0( )p pε ε=  (refer to APPENDIX 

C) into Eq. (6.3a) leads to the following viscoelastic constitutive equation 

in the Laplace space;  

  
( ) ( )

( )
0

0relax

*p E p p

E p

σ ε

ε

=   
= ⋅

 (6.7) 

relax ( )E p   represents the relaxation modulus [ ]relax 0( ) ( ) /E t tσ ε≡   in 

the Laplace space, relating to the pseudo modulus ( )*E p   with 

( ) ( )relax *E p E p p=  , and then through the inverse of Laplace 

transforms of Eq. (6.5a) (Maxwell model) and Eq. (6.5c) (Zener II model) 

(refer to APPENDIX C), we finally have the following relaxation moduli 

in the real space;  

 
[Maxwell liquid] 

  relax M
0 M

g M

( ) ( ) expt tE t E

E E

σ
ε τ

 −= =  
 

=
 (6.8a) 

[Zener II solid] 

  ( )relax e g e
0 M

g e M

( ) ( ) expt tE t E E E

E E E

σ
ε τ

 −= = + −  
 

= +
 (6.8b) 
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(ii) Creep deformation for stepwise loading 

  Using the Heaviside step function ( )u t  , we readily describe the 

stepwise application of a constant stress 0σ   to the system with 

0( ) ( )t u tσ σ=  , and then the substitution of its Laplace transform of 

0( )p pσ σ=   into Eq. (6.3b) combined with the creep function of 

[ ]creep 0( ) ( )C t tε σ≡   results in the pseudo compliance of 

( ) ( ) ( )creep* 1 *C p E p pC p≡ =     with ( ) ( )( )creep 0C p pε σ≡  . The 

creep functions creep ( )C t   of the Maxwell and the Zener II models in 

their real spaces are, therefore via the inverse Laplace transform, finally 

written with  
[Maxwell liquid] 

  creep
0 M

( ) 1( )t tC t
E

ε
σ η

= = +  (6.9a) 

[Zener II solid] 

  

( )

creep
0

g e g Z

g e M

Z M e M

( ) ( )

1 1 1 1 exp

1

t C t

t
E E E

E E E

E E

ε
σ

τ

τ τ

=

    −= + − −          
= +

= +

 (6.9b) 

It must be noticed in the Zener viscoelastic solid that the relaxation time 

Mτ   in Eq. (6.8b) for stress relaxation is always smaller than the 

retardation time Zτ   in Eq. (6.9b) for creep deformation; 

( )Z M e M M1 E Eτ τ τ ≡ + >   . This fact indicates that the creep 

deformation always proceeds in a more sluggish manner than the stress 

relaxation (see Fig. 6.4). 

  The specific discrepancies in their viscoelastic responses observed in 

the Maxwell liquid and the Zener solid are graphically compared in Figs. 

6.3 and 6.4. The viscoelastic liquid exhibits a complete stress relaxation 

in time ( relax ( ) 0E t ↓ ), while the induced stress of the viscoelastic solid 

relaxes to a finite value of its equilibrium modulus ( relax e( )E t E↓ ).  
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6.2 DIFFERENTIAL FORM OF  
        VISCOELASTIC CONSTITUTIVE EQUATION 
               -WIECHERT MODEL- 
  We cannot describe the time-dependent viscoelastic responses with a 
single value of the relaxation/retardation time τ   for most of 

engineering materials including organic polymers, being required to use 

the multiple characteristic times or the relaxation/retardation time 

spectrum.  

  The Wiechert model is shown in Fig. 6.5 that is an extended Zener II 

model; a parallel combination of the multiple Maxwell models having the 

specific relaxation time ( )( )1,2,3i i iE iτ η≡ =   and an elastic spring 

with the equilibrium elastic modulus of eE . The stress ( )tσ  applied to 

the model is, therefore, the sum of the stress ( )i tσ  on the i-th Maxwell 

element and on the equilibrium spring ( )e tσ , as follows;  

  e( ) ( ) ( )i
i

t t tσ σ σ= +  (6.10) 

Due to the parallel combination of each element, the strain ( )tε  of the 

model equals to the strain of each element, that is, ( )( ) it tε ε= , leading 

to the following constitutive relations; 

  
e e( ) ( )

( ) ( )( ) 1 i i

i i

t E t
d t td t

dt E dt

σ ε
σ σε

η

=

= +
 (6.11) 

The Laplace transforms of Eqs. (6.10) and (6.11) result in Eq. (6.3a), 
where the pseudo modulus * ( )E p  is written with 

  

relax

e

* ( ) ( )

1
i

i

i

E p pE p

E Ep
p p

τ

=

 
 
 = +
 + 
 


 (6.12) 

The relaxation modulus in the Laplace space is, therefore, given by 

 e
relax ( ) 1

i

i

i

E EE p
p p

τ

= +
+

  

Applying the inverse Laplace transform to Eq. (6.12), the stress relaxation 
modulus relax ( )E t of the Wiechert model as the generalized expression for 

......

......

......

......

• • • • • •

1E 2E iEeE
1η 2η iη

( )tσ

( )tσ

Figure 6.5 Wiechert model 
comprising the Maxwell models 
with various values of the 
relaxation times 

( )( )1,2,3i i iE iτ η≡ = ⋅⋅ ⋅  
and the equilibrium spring eE  in a 

parallel combination.   
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Eqs. (6.8a) and (6.8b) is given by 

 relax e( ) expi
i i

tE t E E
τ

 −= +  
 

  (6.13) 

in which the model with e 0E =  stands for the viscoelastic liquid as a 

specific of the Wiechert model.  Since the viscoelastic constitutive 

equations that we have considered in this section are based on the 

differential equations of Eqs. (6.1) and (6.11), these equations are referred 

to as the “differential type of viscoelastic constitutive equation”. 

 As has been discussed in this section, the generalized linear 

viscoelastic constitutive equations in the Laplace space are written by  

  relax( ) ( ) ( )
* ( )

p pE p p
E p

σ ε
ε

=
= ⋅

 (6.14) 

The inverse Laplace transform of Eq. (6.14), thus, leads to the following 

viscoelastic constitutive equation in its real space (see APENDIX C);

 relax0

( ')( ) ( ') '
'

t d tt E t t dt
dt
εσ = −  (6.15) 

In deriving Eq. (6.15), we have used the fundamental formulas of Laplace 

transform;  
   [ ]( ) / ( ) (0 )d t dt p pε ε ε −= −L  

with (0 ) 0ε − = , and  

   
0

( ') ( ') ' ( ) ( )
t

f t t g t dt f p g p − =  L  

The fact that none of external strains are applied to the system in past 

times ( ( ') 0tε = ; ' 0t < ) gives the initial condition of (0 ) 0ε − = . In a 

similar way, by the use of the creep function ( )creepC t  instead of using 

the relaxation modulus relax ( )E t  , the following linear viscoelastic 

constitutive equation is also given;  

  creep0

( ')( ) ( ') '
'

t d tt C t t dt
dt
σε = −  (6.16) 

Accordingly, when we compare the Laplace transform of Eq. (6.16) 

  creep( ) ( ) ( )
*( ) ( )

p p C p p
C p p

ε σ
σ

= ⋅

=
 (6.17) 

with Eq. (6.14), we can find the following essential relationship between 
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the relaxation modulus ( )relaxE t   and the creep compliance ( )creepC t  

in the Laplace space as follows; 

  
( ) ( )

2
relax creep

relax creep

( ) ( )

* * 1

p E p C p

E p C p

=

= ⋅ =
 (6.18) 

Furthermore, the inverse Laplace transform of Eq. (6.18) leads to the 

following relation in the real space; 

 relax creep0
( ') ( ') '

t
E t t C t dt t− =  (6.19) 

Due to the integral expressions of the constitutive equations given in Eq. 

(6.15) and (6.16), they are referred to as the integral type of viscoelastic 

constitutive equation. The differential type and the integral type of the 

linear viscoelastic constitutive equations we discussed in this section are 

mathematically equivalent. However, the integral equation is more 

universal and more extensive in applying it to describing the viscoelastic 

behavior of engineering materials, since the integral constitutive equation 
is described in terms of the generic viscoelastic function of relax ( )E t  or  

creep ( )C t   instead of using the specific mechanical combination of 

Hookean springs and Newtonian dashpots in the differential equation.  

 

6.3. INTEGRAL FORM OF  
        VISCOELASTIC CONSTITUTIVE EQUATION 
     – BOLTZMANN’S HEREDITARY INTEGRAL –  
 An elastic body responds in an instantaneous manner to the mechanical 

stimulus such as the stress/strain externally applied, as repeatedly 

mentioned in the preceding sections.  In other word, it recovers in an 

instantaneous manner to the original state once the applied stimulus is 

taken away.  On the other hand, as seen in the time-dependent 

phenomena of stress relaxation and creep deformation of a viscoelastic 
body, the mechanical history in past time 't   has an affect on the 

stress/strain state that we observe at the present time t . Due to the fact 

that the past memory remains in the present mechanical state of 

viscoelastic body, it is referred to as the memory material; the rheological 
functions such as the relaxation modulus relax ( )E t  and the creep function 

creep ( )C t  are, therefore, often called as the memory functions.  

  The Boltzmann’s convolution integral (the Boltzmann’s hereditary 
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integral) forms the basis of the linear viscoelastic theory [1.2, 1.3]. 
Suppose a strain ( ')tε  at the past time 't  as a mechanical stimulus, 

and the induced stress ( ')tσ  as its linear response. In such a way, we 

denote the induced stresses 1( )tσ  and 2( )tσ  for the applied strains of 

1( )tε   and 2( )tε   at the past times of 1't t=   and 2't t=   ( 1 2t t t< <  ), 

respectively. The Boltzmann’s convolution principle supports the 
assumption that the stress ( )tσ  observed at the present time 't t=  is 

described with the convolution of the respective stresses 1( )tσ   and 

2( )tσ ;  

  1 2( ) ( ) ( )t t t t tσ σ σ= − + −  

for the total strain 1 2( ) ( ) ( )t t tε ε ε= +  having been applied to the system 

at the present time. Namely, the Boltzmann’s principle indicates that the 

stress (or strain) observed at the present time can be described with the 

convolution (i.e., the sum) of the respective stresses (or strains) induced 

at past times.  A schematic of the Boltzmann’s hereditary principle is 

depicted in Fig. 6.6 for an arbitrary strain history.  As demonstrated in 
the figure, the stress ( )tσ   we are observing at the present time t   is 

given by 

  ( )relax( ) ( )i i
i

t E t t tσ ε= − Δ  (6.20) 

in terms of the stepwise strain ( )itεΔ  applied to the system at the past 

time it   via the stress relaxation modulus relax ( )E t   as its memory 

function. Equation (6.20) turns to its integral form;  

  relax0

( ')( ) ( ') '
'

t d tt E t t dt
dt
εσ = −  (6.15) 

by replacing the stepwise strain in Eq. (6.20) with 

[ ]( ) ( ') ' 'it d t dt dtε εΔ = .  By the use of the creep function creep ( )C t  as 

the memory function in the Boltzmann’s hereditary integral, in a similar 

way, we derive Eq. (6.16);  

  creep0

( ')( ) ( ') '
'

t d tt C t t dt
dt
σε = −  (6.16) 

  In the mathematical framework of Laplace transform, the so-called 

Carson transform is defined by; 

  
0

* ( ) ( ) ( ) ptf p pf p p f t e dt
∞ −= =   (6.21) 

ε(t)

σ(t)

t'

t't1 t2 t3 t⋅⋅⋅

( ')tεΔ

( )tσ
•

Figure 6.6 Boltzmann’s hereditary 
principle. The stress ( )itσ  induced 

by a stepwise strain at the past time
' it t=   dictates the stress ( )tσ   at 

the present time  t   in a hereditary 

as well as a convolutional manner 
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as a specific type of Laplace transform. Accordingly, as mentioned above, 

the pseudo elastic modulus * ( )E p   and the pseudo compliance 

* ( )C p   are, respectively, the Carson transforms of relax ( )E t   and 

creep ( )C t ;  

  relax

creep

*( ) ( )
*( ) ( )

E p pE p
C p pC p

=

=
 (6.22)  

with the simple interrelation of ( ) ( )* * 1E p C p⋅ =  that is the one-to-

one corresponding relation of 1E C⋅ =  for a perfectly elastic body, as 

discussed in the preceding section (see Eq. (6.18)). In other word, the 

Carson transform of a viscoelastic constitutive equation yields the 

corresponding perfectly elastic constitutive equation. This one-to-one 

correspondence leads to the most essential principle, i.e., the elastic-

viscoelastic correspondence principle; the very complicated time-

dependent viscoelastic problems are simply reduced to the perfectly 

elastic problems through Carson transform; an example will be 

demonstrated in the following section. 
 

6.4 TIME-DEPENDENT POISSON’S RATIO 
         IN VISCOELASTIC DEFORMATION 

 The Poisson’s ratio is also time-dependent in a viscoelastic regime, 

leading to somewhat complicated mechanical analysis [1.3]. To 

circumvent this difficulty, a simple shear test has widely been utilized in 

the conventional rheological tests, due to the iso-volumetric 

deformation/flow under shear, i.e., no need of the considerations on the 

Poisson’s effect. This is the reason why we have long been making use of 
the relaxation shear modulus relax ( )G t  and the shear creep compliance 
function ( )creepJ t  in most of rheological tests and analyses.  However, 

the mechanical processes of indentation contact are always as well as 

inevitably associated with the volumetric change of the material indented.  
The time-dependent viscoelastic Poisson’s ratio ( )tν  , therefore, 

significantly affects the indentation contact mechanics through its effect 
on the elastic moduli ( )relaxE t  and ( )relax'E t . As an appropriate example 

of the application of Carson transform combined with the elastic-

viscoelastic corresponding principle to the viscoelastic deformation and 
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flow, we will discuss in this section the time-dependent Poisson’s effect 

on the viscoelastic functions. 

  The Young’s modulus E , shear modulus G , bulk modulus K  and 

the Poisson’s ratio ν  of a perfectly elastic body are correlated to each 

other through the following equations [1.2]; 

 3 2 3 2
6 2 6 2

K G G
K G G

κν
κ

− −= =
+ +

 (6.23a) 

 ( )2 1E Gν= +  (6.24a) 

 2

2'
1 1

E GE
ν ν

 ≡ = − − 
 (6.25a) 

In Eq. (6.23a), the bulk modulus K  is defined by ( )p K V V= Δ  in 

terms of the volumetric strain V VΔ   under hydrostatic pressure p  , 

and the bulk compliance κ  is defined as the inverse of bulk modulus, 
i.e., 1 Kκ = . Since the bulk compliance of incompressible body is zero, 

i.e., 0κ =  , Eqs. (6.23a), (6.24a), and (6.25a) lead to the well-known 
relations of 1 2ν = , 3E G= , and ' 4E G= .   

 In linear viscoelastic bodies, once we apply the elastic-viscoelastic 

correspondence principle combined with the Carson transform to their 

time dependent viscoelastic moduli of ( )E t , ( )G t , and ( )tν  through 

the formulas of Eqs. (6.23a), (6.24a), and (6.25a), we have the following 

relations in the Laplace space; 

 3 * 2 * 3 2 * **
6 * 2 * 6 2 * *

K G G
K G G

κν
κ

− −= =
+ +

 (6.23b) 

 ( )* 2 1 * *E Gν= +  (6.24b) 

 2

* 2 *'*
1 * 1 *

E GE
ν ν

 ≡ = − − 
 (6.25b) 

Suppose a model viscoelastic solid having the following shear modulus 
with a single relaxation time 0τ ;  

 ( )e g e
0

( ) exp tG t G G G
τ

 
= + − − 

 
 (6.26) 

where ( )g (0)G G=  is the glassy modulus (instantaneous modulus) and 

( )e ( )G G= ∞   stands for the equilibrium modulus; substituting e 0G =  

in Eq. (6.26) turns the model to a viscoelastic liquid, so-called the 
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Maxwell model. Since the time-dependent nature of the bulk compliance 

( )tκ  is very minor when we compare it to other viscoelastic functions 

[1.3], the bulk compliance is, in the present context, assumed to be time-

independent, i.e., 0( )tκ κ=  (a constant value), making the subsequent 

mathematical operations/procedures rather simple and compact. 
  Substituting the Carson transform *G  of Eq. (6.26) into Eqs. (6.23b) 

– (6.25b), and then making their inverse Laplace transform, we finally 

have the following viscoelastic functions in the real space;  

 ( ) ( )( )

( )( )

1g g g

g

( ) 31 exp
2 1 2 1 1

3
2 1 1

E t R t
G R

R
R

τν ν γ

ν γ

    = − −    + + + 

+
+ +

  (6.27) 

 ( )
g

g g

1 21 ( )( )
2 2 2 1

E tt
G

ν
ν

ν

 − 
 = −  

+    
 (6.28) 

and  

 

( )

( ) ( )

( )

g
g g

g

0

g

2

'( ) 12 1
2 1 1 4

1
1 exp

2
1 1 exp

2 1 4

E t R R
G R

tR

R t
R

γν
ν γ

ν
τ

ν
τγ

+= −
− +

−  −+ −  
 

+ −  −+  
 +

 (6.29) 

The characteristic relaxation times 1τ   and 2τ   in these equations are 

described in terms of the shear relaxation time 0τ  through the following 

equations; 

 
( )1 0

g

3 1
12 1 R

τ τ
γν

=
++

 (6.30) 

 2 0
1 4

1 4 R
γτ τ

γ
+=

+
 (6.31) 

in which gν  means the glassy (instantaneous) Poisson’s ratio defined as 

g (0)ν ν=  ; R   and γ   are, respectively, defined by e gR G G=  ,

( ) ( )g g1 2 2 1γ ν ν = − +   ; the R-value, therefore, becomes zero in 

viscoelastic liquid ( e 0G =  ). The characteristic relaxation time 1τ  

dictates the relaxation behavior of the present viscoelastic model through 

Figure 6.7 The characteristic 
relaxation time 1τ   (Eq. (6.30)) that 

dictates the time-dependent natures 
of ( )E t   and ( )tν . Notice that 
there exists the relation of 1 0τ τ≥  
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Figure 6.8 Characteristic relaxation 
times of 1τ  and 2τ  plotted against 
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( )E t  (see Eq. (6.27)) and the time-dependent ( )tν  (see Eq. (6.28)). 

As well demonstrated in Fig. 6.7, it should be noticed that the relaxation 

time 1τ   is always larger than the shear relaxation modulus 0τ  , i.e., 

1 0τ τ≥ , leading to a more sluggish relaxation of ( )E t  than the shear 

relaxation ( )G t .  On the other hand, the relaxation behavior of ( )'E t  

(see Eq. (6.29)) is described via the twin characteristic times of 0τ  and 

2τ   with 2 0τ τ≥  ; Figure 6.8 shows the interrelation between these 

characteristic relaxation times and the glassy Poisson’s ratio gν  of 

viscoelastic liquids, indicating the relations of 2 1τ τ>   for arbitrary 

values of g0 1 2ν≤ <  . Furthermore, it should be noticed that these 

characteristic relaxation times agree with each other, i.e., 1 0 2τ = τ = τ , 

for the incompressible viscoelastic body with g 1 2ν =  .  The 

relaxation behaviors of ( )E t   and ( )'E t   are plotted in Fig. 6.9 in 

comparison to the shear relaxation of ( )G t  for the viscoelastic liquid 

( g 0.3ν =  , 0 200τ =  s). Due to the fact of 0 1 2τ τ τ≤ ≤ , the relaxation 

behaviors are progressively more sluggish in the order of ( )G t , ( )E t , 

and then ( )'E t . The time-dependent nature of the viscoelastic Poisson’s 

ratio ( )tν  is shown in Fig. 6.10 for the viscoelastic bodies ( g 0.1ν = ,

0 200τ =  s) with various values of e gG G  .  As readily seen in Eq. 

(6.28), the time-dependent nature of ( )tν  stems from the relaxation 

modulus ( )E t  , resulting in its monotonic increase with time: Figure 

6.10 demonstrates the time-dependent Poisson’s ratio ( )tν   of the 

viscoelastic bodies, where the Poisson’s ratio of viscoelastic liquid 

( e g 0G G =  ) converges to ( ) 1 2tν =  with time, i.e., ( )lim 1 2
t

tν
→∞

=  , 

implying that the liquid turns to an incompressible fluid in time. 
 

 

 

 

 

 

 

 

Figure 6.10 Time-dependent    
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VISCOELASTIC INDENTATION 
                   CONTACT MECHANICS 
 
7.1 MATHEMATICAL FORMULATION  
 We can readily make a mathematical formulation of viscoelastic 

indentation contact mechanics through the “elastic-viscoelastic 

correspondence principle” applied to the elastic indentation contact 

mechanics. Namely, the elastic theory of indentation contact mechanics 

we developed in Chapter 3 is readily extended to the corresponding 

viscoelastic theory via the Laplace transform and its inversion (see 

Chapter 6) [7.1-7.5].  The constitutive equation of the elastic indentation 

contact given in Eq. (3.32) is rewritten in terms of the indentation load 

P  and the contact area 2( )A aπ= , as follows; 
  ( )I'P E Aε=  (3.32’) 

Once we apply the elastic-viscoelastic correspondence principle to Eq. 

(3.32’), the following constitutive equations of viscoelastic indentation 

contact are obtained; 

  

[ ]

[ ]

I
relax

0

I creep
0

( ') ( ')
( ) ' ( ') '

'
( ')

( ) ( ) ' ( ') '
'

t

t

d t A t
P t E t t dt

dt
d P t

t A t C t t dt
dt

ε

ε

⋅
= −

⋅ = −









 (7.1) 

In Eq. (7.1), relax' ( )E t   stands for the plane-strain relaxation modulus 

defined as 2
relax relax' ( ) ( ) / 1 ( )E t E t tν = −  . There is also a similar relation 

to Eq. (6.19) for the plane-strain creep function creep' ( )C t  

 relax creep0
' ( ') ' ( ') '

t
E t t C t dt t− =  (7.2) 

 As readily expected from Eqs. (3.29) - (3.31), it must be noticed that 
the indentation strains I ( )tε  of flat-ended punch and spherical indenter 

are time-dependent in viscoelastic regime. In Tab. 7.1 listed are the 

viscoelastic constitutive equations for different indenter’s tip geometries. 

As clearly seen in the table, due to the geometrical similarity of 

cone/pyramid indenter (including Vickers/Berkovich indenters), the 
indentation strain Iε   is dependent only on the inclined face-angle β  , 

but not on the penetration depth, leading to the time-independent 
indentation strain, i.e., I ( ') tan 2tε β=  , and making the constitutive 

equations very simple and compact; 

[7.1] J.R.M. Radock, Q. Appl. Math., 15,  
198 (1957) 

[7.2] S.C. Hunter, J. Mech. Phys. Solids,  
     8, 219 (1960) 
[7.3] M. Sakai, Phil. Mag, A, 82[10], 1841 

(2002) 
[7.4] M. Sakai, S. Shimizu, J. 
     Non-Crystal. Solids, 282, 236 (2001)  
[7.5] M. Sakai, J, Soc. Rheol. Japan,  
     39(1･2), 7 (2011) 
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relax

0

creep
0

tan ( ')( ) ' ( ') '
2 '

( ')( ) 2cot ' ( ') '
'

t

t

dA tP t E t t dt
dt
dP tA t C t t dt

dt

β

β

= −

= −







 (7.3) 

In the following sections, using Eq. (7.3), we will discuss the viscoelastic 

indentation contact behaviors in the various types of tests of 

cone/pyramid indentation.  

 

(i) Step-wise penetration tests 
 Let us discuss the indentation load relaxation for the stepwise 
application of a constant contact-area 0A ; 

 0( ) ( )A t A u t= ⋅ , (7.4) 

and the creep deformation of contact-area under the stepwise application 
of a constant indentation load 0P ; 

  0( ) ( )P t P u t= ⋅  (7.5) 

The applications of Eqs. (7.4) and (7.5) to the right-hand side of Eqs. (7.3) 
combined with the relation of ( ) ( )du t dt tδ=   ( ( )tδ  ; Dirac’s delta 

function) result in  

 0 relax

0 creep

tan( ) ' ( )
2

( ) 2cot ' ( )

P t A E t

A t P C t

β

β

= ⋅

= ⋅
 (7.6) 

Accordingly, we can determine the relaxation modulus relax' ( )E t  and/or 
the creep function creep' ( )C t   through measuring the indentation load 

relaxation ( )P t  and/or the creep deformation of the contact area ( )A t . 

However, in the conventional instrumented indentation apparatus, we 
cannot measure the indentation contact areas not only 0A  but also ( )A t , 

although it is possible for us to measure the indentation load relaxation 
( )P t   and the time-dependent penetration depth ( )h t  . We need, 

therefore, to use somewhat undesirable approximation/assumption to 
estimate ( )A t  from the ( )h t  observed.  To circumvent this difficulty, 

we have to use the instrumented indentation microscope, the details of 

which will be given in the later chapter (Chapter 11).  
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(ii) Constant-rate of penetration tests  
 In the indentation tests with a constant-rate Ak  of contact-area 

increment 
 ( ') 'AA t k t= ⋅ , (7.7) 

and with a constant-rate of loading Pk  

 ( ') 'PP t k t= ⋅ , (7.8) 
the resultant viscoelastic responses of ( )P t  for the former, and of ( )A t  

for the latter are, respectively, described by the use of Eq. (7.3) combined 

with Eqs. (7.7) and (7.8), as follows; 

 
relax0

creep0

tan( ) ' ( ') '
2

( ) 2 cot ' ( ') '

tA

t

P

kP t E t t dt

A t k C t t dt

β

β

= −

= −




 (7.9) 

We can, therefore, readily determine the relaxation function relax' ( )E t  
and/or the creep function creep' ( )C t   via using the time-derivative of 

( )P t  and/or ( )A t  observed in experiments;  

 
relax

creep

2cot ( )' ( )

tan ( )' ( )
2

A

P

dP tE t
k dt

dA tC t
k dt

β

β

=

=
 (7.10) 

In these indentation tests, in order to measure ( )A t  , the instrumented 

indentation microscope plays a very essential role (see Sec. 11.3). The 

details of the viscoelastic constitutive relations are listed in Tables 7.1 – 

7.3 for the flat-ended cylindrical punch, spherical indenter, and the 

conical indenter.   

  

Table 7.1 Integral-type viscoelastic constitutive equations for the axisymmetric indenters 

Flat-ended cylindrical punch Spherical indenter Conical indenter

relax
0

tan ( ')( ) ' ( ') '
2 '

t dA tP t E t t dt
dt

β= −


creep
0

( ')( ) 2cot ' ( ') '
'

t dP tA t C t t dt
dt

β= −


0 relax
0

( ')( ) 2 ' ( ') '
'

t dh tP t a E t t dt
dt

= −


creep
00

1 ( ')( ) ' ( ') '
2 '

t dP th t C t t dt
a dt

= −


3/2

relax3/2
0

4 ( ')( ) ' ( ') '
3 '

t dA tP t E t t dt
R dtπ

= −



3/2
3/2

creep
0

3 ( ')( ) ' ( ') '
4 '

tR dP tA t C t t dt
dt

π= −


 

     0a : radius of the cylinder       R : radius of the sphere    β : inclined face-angle of the cone 
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Table 7.2 Viscoelastic responses for the step-wise indentation 

Stepwise penetration to a
constant contact-area A0

Stepwise penetration to a
constant load P0

flat-ended
cylinder
spherical
indenter
conical
indenter

A(t)

P(t) t

t

A0

0

P(t)

A(t) t

t

P0

0

0 0 relax( ) 2 ' ( )P t a h E t=

3/2
0

relax
4( ) ' ( )

3
AP t E t

R π
 =  
 

0 relax
tan( ) ' ( )

2
P t A E tβ=

0
creep

0

( ) ' ( )
2
Ph t C t
a

=

3/2
3/2 0

creep
3( ) ' ( )

4
RPA t C tπ=

0 creep( ) 2 cot ' ( )A t P C tβ= ⋅

 
* Use the penetration depths of ( )h t  and 0h  instead of the contact areas of 

( )A t  and 0A  for the flat-ended cylindrical punch 

Table 7.3 Viscoelastic responses for the constant-rate indentation  

Constant-rate of contact
area increment

Constant-rate of loading

flat-ended
cylinder
spherical
indenter
conical
indenter

0 relax
( ) 2 ' ( )h

dP t a k E t
dt

=

3/2
relax

3/2
' ( )( ) A E pkP p

R pπ
=

relax
( ) tan ' ( )

2
AdP t k E t

dt
β= ⋅

creep
0

( ) ' ( )
2

Pdh t k C t
dt a

=

3/2 3/2

creep
( ) 3 ' ( )

4
PdA t Rk C t

dt
π=

creep
( ) 2 cot ' ( )P

dA t k C t
dt

β= ⋅

A(t)

P(t) t

t0

Ak
P(t)

A(t) t

t0

Pk

 

* Use the penetration depth of ( )( ) hh t k t= ⋅  instead of the ( )( ) AA t k t= ⋅  for 

the flat-ended cylindrical punch 
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7.2 VISCOELASTIC MEYER HARDNESS 
 The Meyer hardness MH   of elastic/elastoplastic bodies is time/rate-

independent, and defined by the ratio of the applied indentation load P  
and the resultant contact area A   as MH P A=   (see Eq. (5.1b)).  

Accordingly, on the basis of the elastic-viscoelastic corresponding 

principle, when we apply the Laplace transform inversion to the 

transformed Meyer hardness M*P H A= ⋅  , we have the following 
formula of the viscoelastic Meyer hardness ( )MH t ;    

 ( )M
0

( ')( ) ' '
'

t dA tP t H t t dt
dt

= −


 (7.11) 

The viscoelastic Meyer hardness M ( )H t   is, therefore, by no means 

given by the indentation load ( )P t  divided by the contact area ( )A t  

at the respective time t ; M ( ) ( ) ( )H t P t A t≠ .  

  In order to understand the physics of viscoelastic Meyer hardness, 

further considerations will be made in this context for the stepwise 
penetration, as an example.  Substituting 0( ') ( ')A t A u t= ⋅   into Eq. 

(7.11) and I I0 0( ') ( ') ( ')t A t A u tε ε⋅ = ⋅   into Eq. (7.1), and comparing 

these resultant relations, we finally find the fact that the viscoelastic 
Meyer hardness M ( )H t  is equivalent to the relaxation modulus 

relax' ( )E t ; 

  M I0 relax( ) ' ( )H t E tε=  (7.12) 
in which the indentation strain I0ε  (refer to Eqs. (3.29) - (3.31)) is; 

  flat-ended cylindrical punch: 

 0
I0

0

2 h
a

ε
π
 

=  
 

  (7.13a) 

  spherical indenter： 

 0
I0

4
3

a
R

ε
π
 =  
 

 (7.13b) 

  conical indenter: 

  I0
tan

2
βε =   (7.13c) 

In Eq. (7.13a),  0h  is the penetration depth of the cylindrical punch (the 

radius of 0a ). In Eq. (7.13b), 0a is the contact radius  induced by the 

stepwise penetration in spherical indentation. Due to the geometrical 
similarity of cone indentation, its indentation strain I0ε  is independent 

of the penetration depth applied, and described by I0 tan 2ε β=   in 
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terms of the characteristic inclined face-angle β  of the cone. This fact 

means that Eq. (7.13c) is always applicable to arbitrary depths of 

penetration.  The equivalence of the viscoelastic Meyer hardness and 

the relaxation modulus is also well recognized from the fact that the 
viscoelastic Meyer hardness is given by M 0( ) ( )H t P t A=  in terms of 

the indentation load relaxation ( )P t  observed in the indentation test of 

a stepwise penetration to a constant contact-area 0A .  

 
7.3 INDENTATION CONTACT MECHANICS OF  
                   THE VISCOELASTIC MODELS 
  The numerical indentation contact mechanics will be discussed in this 
section for the Maxwell liquid and the Zener II solid ( M eE E=   is 

assumed in Fig. 6.2 for simplicity) in the constant-rate 

penetration/loading tests (Eqs. (7.7) and (7.8); Table 7.3) of a conical 
indenter with the inclined face-angle β .  

 
[Constant-rate penetration test] 
 In the constant-rate penetration test ( ( ') 'AA t k t= ⋅  ), the viscoelastic 
indentation load ( )P t  ) is given by the first formula of Eq. (7.9);

 relax0

tan( ) ' ( ') '
2

tAkP t E t t dtβ
= −  (7.9a) 

Through applying the relaxation moduli ( )relax'E t   of the Maxwell 

liquids (Eq. (6.8a)) and of the Zener II solid (Eq. (6.8b) with 

M e g' ' ' 2E E E= =  for simplicity) to Eq. (7.9a), we have the following 

formulas of the time-dependent indentation load ( )P t :  

(i)  Viscoelastic Maxwell liquid 

        ( ) ( )M
M M

' tan( ) 1 exp
2 A

EP t k tβ τ τ= − −    (7.14) 

(ii)  Viscoelastic Zener solid 

     ( ) ( ){ }M
M M M

' tan( ) 1 exp
2 A

EP t k t tβ τ τ τ = + − −   (7.15) 

The normalized indentation load 

( ) ( ) ( )N M M M2 ( )cot 'AP t P t k Eτ β τ≡ ⋅     
of Eqs. (7.14) and (7.15) are plotted in Fig. 7.1 against the normalized 
time Mt τ . Figure 7.1 shows that the indentation load of the Maxwell 
liquid converges to N M( ) 1.0P t τ →   or ( )( ) tan 2AP t k β η→   in the 

Figure 7.1 The normalized 

indentation load in the constant-rate 
of penetration test ( ( ') 'AA t k t= ⋅ ):  

The solid line represents the Maxwell 

liquid, and the dashed line indicates 

the Zener solid.  
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long-time region of Mt τ . This fact indicates that the Maxwell liquid 

in its steady state behaves as the Newtonian liquid with the shear 
viscosity η . On the other hand, as shown in Fig. 7.1 for the Zener solid, 

there exist a linear relation between N M( )P t τ  and Mt τ  in the long-

time region of Mt τ , i.e., 

  ( ) ( )N M M MAP t t A t kτ τ τ∝ ∝   

or  

 ( ) ( ) ( )e' tan 2P t E A tβ∝    
This linear relation indicates that the Zener model behaves as the 
perfectly elastic body with the equilibrium elastic modulus of e'E  in 

the long-time region. 

 
[Constant-rate of indentation loading] 

 The time-dependent viscoelastic contact area ( )A t  for constant-rate 

of indentation loading ( )' 'pP t k t= ⋅  is given by the second formula of 

Eq. (7.9); 

  creep0
( ) 2 cot ' ( ') '

t

PA t k C t t dtβ= −  (7.9b) 

When we apply the creep functions of the Maxwell liquids (Eq. 6.9a) and 

of the Zener II solid (Eq. 6.9b) to Eq. (7.9b), we have the following 
formulas of the time-dependent contact area ( )A t : 

(i)  Viscoelastic Maxwell liquid 

        ( ) ( )2
M M M

M

2cot 1( )
' 2PA t k t t

E
β τ τ τ = +  

 (7.16) 

(ii)  Viscoelastic Zener solid 

        
( ) ( ){ }
( )

M M Z
M

Z M e M

2cot( ) 1 exp
'

1

PA t k t t
E

E E

β τ τ τ

τ τ

 = − − − 

= +
 (7.17) 

The Zener’s relaxation time Zτ   is given by z M2τ τ=   because of the 

relation M eE E=   we assumed for simplicity. The normalized contact 

areas ( )[ ]N M M M( ) ' tan 2 PA t A t E kτ β τ≡  of Eqs. (7.16) and (7.17) are 

plotted in Fig. 7.2 against the normalized time Mt τ . In the long-time 

region of Mt τ  , the N M( )A t τ   vs. Mt τ  relation of the Zener solid 

becomes linear with the slope of 1.0, i.e., 

( ) ( )N M M MPA t t P t kτ τ τ∝ =  , thus leading to the linear relation 

 
Figure 7.2 The normalized contact 

area in the constant-rate of loading 
test ( ( ') 'PP t k t= ⋅  ):  The solid line 

represents the Maxwell liquid, and 

the dashed line indicates the Zener 

solid.  
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between the indentation load ( )P t  and the resultant contact area ( )A t , 

i.e., ( ) ( )e'P t E A t∝ ⋅ . This fact implies that the viscoelastic Zener solid 

behaves as a perfectly elastic body having the elastic modulus of e'E  

in the long-time region, like as the steady-state deformation observed in 

the constant-rate penetration test (refer to the consideration on Eq. (7.15) 

and in Fig. 7.1). 
 We emphasized in Sec. 7.2 and in Eq. (7.11) that the viscoelastic Meyer 
hardness ( )MH t  is by no means given by ( ) ( ) ( )MH t P t A t=  at all, but 

there exists an inequality relation of ( ) ( ) ( )MH t P t A t≠  .  The 

significant discrepancies existing between the viscoelastic Meyer 
hardness ( )MH t  (see Eq. (7.11)) and the ratio of ( ) ( )P t A t  calculated 

via Eqs. (7.14) – (7.17) are well demonstrated in Figs. 7.3 and 7.4 for 
their normalized plots; the hardness numbers of ( )M N

H t     and  

( ) ( )
N

P t A t     are, respectively, defined as ( )MH t   and ( ) ( )P t A t  

normalized with g' tan 2E β . The relaxation behaviors of the hardness 

number ( ) ( )P t A t  (indicated by the symbols of ○ and ● in Figs. 7.3 

and 7.4) are always more sluggish than those of the Meyer hardness 
( )MH t  (indicated by the solid lines), leading to always larger values of 

( ) ( )P t A t  than those of ( )MH t . The hardness numbers both ( ) ( )P t A t  

and ( )MH t  of the Maxwell liquid (Fig. 7.3) progressively diminish with 

time, while those values of the Zener solid (Fig. 7.4) converge to a finite 
value of e g' ' 0.5E E =  in the long-time region of t τ → ∞ (notice that 
we assumed M e g' ' ' 2E E E= =  for the model examined). 

  

Figure 7.4 Normalized viscoelastic 
Meyer hardness ( )M N

H t    , and 

( ) ( )
N

P t A t     plotted against the 

normalized time of Mt τ   (viscoelastic 

Zener solid)  
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Figure 7.3 Normalized viscoelastic 
Meyer hardness ( )M N

H t    , and 

( ) ( )
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P t A t     plotted against the 
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INDENTATION CONTACT MECHANICS  
OF SOFT MATTERS  

WITH SURFACE ADHESION 
 
 In the preceding sections, we have discussed the elastic/elastoplastic 

indentation contact mechanics of engineering materials including metals 

and ceramics so called the hard materials having rather large elastic 
modulus of ' 100E ≥  GPa.  Due to the large elastic modulus of such 

hard materials, the surface adhesion, even if there exists, makes a rather 

minor effect on their contact behavior. In most cases, therefore, we can 

neglect the surface adhesion in their indentation contact mechanics. On 

the other hand, the elastic moduli of soft materials including organic 

polymers, biomaterials, and microbiological mediums are rather small, 

and fall in the range of ' 1E ≈ kPa - 100MPa, where the surface adhesion 

plays an essential role in their mechanical characteristics and functions. 

It must be also noticed that the mechanical characteristics of most of these 

soft matters are time dependent viscoelastic and/or elastoplastic.  

The indentation contact mechanics of perfectly elastic bodies with 

surface adhesion has well been appreciated through the JKR-theory 

(Johnson-Kendall-Roberts theory) ([8.1], [8.2], [8.3]), the details of 

which will be given in Section 8.1.  While on the other hand, neither 

theoretical considerations nor well-conducted experiments have been 

conducted for elastoplastic/viscoelastic bodies with surface adhesion. To 

overcome these difficulties and issues, the considerations on FEA-based 

numerical indentation contact mechanics will be made in Section 8.2 for 

elastoplastic bodies. As to the indentation contact mechanics of time-

dependent viscoelastic bodies with surface adhesion, the “elastic-

viscoelastic correspondence principle” (refer to Chapters 6 and 7) will be 

applied to the JKR-theory in Section 8.3. The details of experimental 

studies of elastoplastic/viscoelastic soft matters with surface adhesion 

will be given in Chapter 12.  

  

[8.1] K.L. Johnson, “Contact Mechanics”, 
Cambridge University Press (1985) 
[8.2] K.L. Johnson, K. Kendall, A.D. Roberts, 
“Surface energy and the contact of elastic 
solids”, Proc. Roy. Soc. London A, 324:301-
8.7(1971) 
[8.3] D. Maugis, “Contact, Adhesion and 
Rupture of Elastic Solid”, Springer (2000) 

CHAPTER  8 

71



8.1 ELASTIC BODIES WITH SURFACE ADHESION  
- THE JKR THEORY- 

The JKR theory focuses only on the contact mechanics of sphere. In 

this section, however, we will also discuss the JKR theory extended to 

the conical/pyramidal indentation contact, since the Vickers/Berkovich 

indentation is very conventional in the practical indentation tests.  

Suppose an axisymmetric indenter with an arbitrarily shape indented 
onto an elastic half-space, resulting in the contact radius a   and the 

penetration depth h  under the indentation load P . The indenter will 

be withdrawn to the elastic body having surface adhesion, i.e., the surface 

adhesion induces negative contact pressure. This fact implies that the 

indentation load P  at the contact radius a  will be smaller than that of 

the elastic body without surface adhesion.  The JKR theory models the 

surface adhesion as the negative contact pressure acting on the 

cylindrical flat punch with the radius a .  
 Using Eq. (3.10), the contact pressure ( )p r  of a cylindrical flat 

punch having the radius a  is given by  

 
1 22

F F( ) 1 ; 0ap r p r a
r

−
  = − ≤ <  

   
 (8.1) 

where use has been made of the relation ( ) ( )zp r rσ= − . In Eq. (8.1), the 

subscript F stands for Flat punch. The coefficient of the contact pressure 

Fp   must be a negative value ( F 0p <  ) when it describes surface 

adhesion.  In a similar way, using Eqs. (3.19) and (3.26), the contact 

pressure is 

 
1 22

S S( ) 1 ; 0ap r p r a
r

  = − ≤ <  
   

 (8.2) 

for spherical indentation, and  

 ( ) ( )
C

1
C cosh ; 0p r p a r r a−= ≤ <  (8.3) 

for conical indentation.  In these expressions, the subscripts S and C 

indicate Sphere and Cone, respectively.  In the JKR theory, therefore, 

the contact pressure distribution beneath the indenter of an elastic body 

with surface adhesion is described by superposing Eq. (8.1) on Eq. (8.2) 

or on Eq. (8.3) as follows; 
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  Spherical indentation 

 
1 2 1 22 2

S F( ) 1 1a ap r p p
r r

−
      = − + −      

         
 (8.4) 

  Conical indentation 

 ( )
1 22

1
C F( ) cosh 1 ap r p a r p

r

−

−
  = + −  

   
 (8.5) 

On the other hand, using the geometrical formula of Eq. (3.1), the contact 
surface profile beneath the indenter ( 0 r a≤ ≤ ) is described by  

  Spherical indentation 

 
2

( )
2z
ru r h
R

= −     (8.6) 

  Conical indentation 
 ( ) tanzu r h r β= −    (8.7) 

Appling the analytical procedures in Sec. 3.1 combined with Eqs. (8.1) – 

(8.5) to Eq. (8.6) or to Eq. (8.7), we finally have the following relations;   

【Spherical indentation】 

 ( )
2

2 2S F2
4 ' ' 2

p ap ra r h
aE E R

π π
− + = −   (8.8) 

  Notice the algebraic identity of Eq. (8.8) as to the variable  

    r , then we have the following relations;  

 S
2 'aEp

Rπ
=     (8.9) 

 ( )S F2
2 '

ah p p
E

π= +    (8.10) 

   Furthermore, applying 
0

( )2
a

P p r rdrπ=   to Eq. (8.4),  

 the indentation load is given by 

 2
S F

2 2
3

P p p aπ = + 
 

   (8.11) 

【Conical indentation】 
A similar mathematics in the preceding spherical indentation contact 

leads to the following relations; 

 C F21 tan
' '

ap apr h r
E a E

π π β
π

 − + = − 
 

 (8.8’) 
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 C
' tan

2
Ep β=     (8.9’) 

 ( )S F'
ah p p

E
π= +    (8.10’) 

 ( ) 2
C F2P p p aπ= +    (8.11’) 

The coefficients of contact pressure distribution Sp   and Cp   in Eqs. 

(8.9) and (8.9’) are, therefore, successfully related to the elastic modulus 

'E  . It must be noticed that these coefficients of contact pressure 

distribution are identical to those we have already derived in Secs. 3.2 

and 3.3 for the perfectly elastic body without surface adhesion. 

Unfortunately, however, we have failed in describing the pressure 
distribution coefficient Fp   of cylindrical flat punch in terms of the 

surface adhesion in the preceding context. To overcome this difficulty, let 

us make an energy-based consideration on the indentation contact 
processes, since the surface adhesion γ  (N/m) is equivalent to the 

surface energy γ  (J/m2). 

 In the first step of indentation contact process, suppose an 

axisymmetric indenter pressed onto an elastic body without surface 

adhesion to the indentation load 1P  as depicted in Fig. 8.1(a), at which 

the penetration depth 1h  and the contact radius 1a  are assumed to be 

induced. The elastic strain energy ( )1
1 0

h
U Pdh=    stored in the elastic 

body associated with this indentation contact process is  
  Spherical indentation 

 
2 3

21
1 S1

2
15 '

aU p
E

π
=    (8.12) 

  Conical indentation 

 
2 3

21
1 C13 '

aU p
E

π
= .   (8.13) 

The elastic stored energy 1U  is represented by the area OABO in Fig. 

8.1(a) of the P - h  diagram.  In Eqs. (8.12) and (8.13), S1p  and C1p  

are, respectively, the contact pressure coefficients of spherical and 

conical indentations at the contact radius 1a  ; S1 12 'p a E Rπ=   and 

( )C1 ' 2 tanp E β= .  It must be noticed that C1p  is independent of the 

contact radius 1a   due to the geometrical similarity of conical 

indentation.  
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Figure 8.1 Energy-based considera-

tions on the indentation contact 

processes of an elastic body with 

surface adhesion: (a) the indentation 

loading path of an elastic body 

without surface adhesion (the line 

OA), (b) the unloading path 

associated with the incremental 

increase of surface adhesion (the line 

AC), (c) the elastic stored energy 

EU  of the elastic body with surface 

adhesion at the point A 
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  In the subsequent second step of indentation contact process, at the 

point A ( 1P , 1h , 1a ) in Fig. 8.1(b), let us consider the variation of the 

strain energy associated with the incremental surface adhesion from 0 to 

γ   on the contact surface maintaining its contact area at 2
1aπ  . This 

mechanical process implies that the indenter is progressively pulled to the 

contact surface, resulting in unloading, as shown in Fig. 8.1(b), along the 

linear line AC, since the contact area maintains constant. The indentation 

contact state at the point C ( 2P , 2h , 1a ) is the equilibrium state of the 

elastic body having the surface energy of γ . This mechanical process 

along the line AC will be equivalent to the unloading process of a flat-

punch with the radius 1a  . The total energy released through this 

unloading process along the line AC is denoted by ( )2 0U < , and given 

by the area ABDCA (＝ 2U− ) in Fig. 8.1(b). The P - h  unloading path 

along the line AC is, therefore, described by  

 ( )
2

1 1 F1

1 1 1

1
1 F1

2
2 '

'

P P a p
a E h h P

ah h p
E

π

π

= +
= − +

= +

  (8.14) 

where use has been made of Eq. (3.9) for the indentation of a flat-punch. 

In Eq. (8.14), we must notice the fact that the coefficient of contact 

pressure distribution F1p   (see Eq. (8.1)) of the cylindrical flat-punch 

with the radius 1a  is negative due to surface adhesion. The indentation 

load 1P   at the point A is given by ( )2
1 1 S12 3P a pπ=   for spherical 

indentation, and 2
1 1 C1P a pπ=  for conical indentation. On the other hand, 

the released energy ( )2 0U <   associated with the incremental surface 

adhesion is finally given by   
  Spherical indentation 

 
2 3

21
2 S1 F1 F1

2
' 3

aU p p p
E

π  = + 
 

  (8.15) 

 

  Conical indentation 

 ( )
2 3

21
2 C1 F1 F1'

aU p p p
E

π
= +   (8.16) 
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through using the formula of 2 2

1 1

2 2
2 1

2
1 12 ' 4 '

h P

h P

dP P PU Pdh P
a E a E

−= = =  . 

Accordingly, when we apply an indentation load to an elastic half-space 

with surface adhesion to the contact radius of a  , using Eqs. (8.12) - 
(8.16), the associated elastic strain energy EU  stored in the body (the 

area of ACDOA in Fig. 8.1(c)) is;    

  Spherical indentation 

 ( )
2 3

2 2
E 1 2 S S F F

2 2
' 15 3

aU U U p p p p
E

π  ≡ + = + + 
 

 

      (8.17a) 

    or Eqs. (8.9) and (8.10) combined with Eq. (8.17a) result in 

 
( )E 1 2

2 22 3 2
2

2
1 ' 2 ' '

' 5 3

U U U

a aE E Eh h
E R aR

π
π ππ

≡ +

     = − +    
     

 

       (8.17b) 

   Conical indentation 

 ( )
2 3

2 2
E 1 2 C C F F

1
' 3

aU U U p p p p
E

π  ≡ + = + + 
 

 

      (8.18a) 

      or Eqs. (8.9’) and (8.10’) combined with Eq. (8.18a) lead to 

 
( )E 1 2

2 22 3 2
21 ' tan ' tan '

' 3 2 2

U U U

a E E Eh h
E a a

π β β
π π

≡ +

     = − +    
     

 

      (8.18b) 

 As mentioned in the preceding considerations, in the present 

indentation contact problem, the adhesive surface force introduces the 
surface energy SU   which decreases when the surfaces come into 

intimately contact and increases when they separate.  Therefore, we can 

write 

 2
S 2U aγπ= −     (8.19) 

The total energy (the Gibbs free energy) TU  of the present mechanical 

system, therefore, is given by 
 T E SU U U= +     (8.20) 
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In the mechanical equilibrium under a fixed depth of penetration meaning 

none of external works, the variation of total energy associated with 
incremental contact radius aδ  results in 

 T 0
h

U
a

∂  = ∂ 
    (8.21) 

Substituting Eqs. (8.17) - (8.20) into Eq. (8.21) and using Eq. (8.17b) or 

Eq. (8.18b), we have the relation of ( ) ( )2 2 2
E F'hU a a E pπ∂ ∂ =   both 

for spherical and conical indentations. We can, therefore, finally relate 

the pressure distribution coefficient Fp  to the adhesive energy γ  as 

follows; 

 F
4 'Ep

a
γ
π

= −     (8.22) 

 Once we get the analytical formulas of Sp   (Eq. (8.9)), Cp   (Eq. 

(8.9’)), and Fp  ((8.22)), substituting these coefficients into Eqs. (8.10) 

and (8.11), or into Eqs. (8.10’) and (8.11’), we can finally describe the 

penetration depth h   and the indentation load P   in terms of the 

contact radius a : 

  Spherical indentation 

  
2

1 22
'

ah a
R E

πγ= −    (8.23) 

 3 3 24 ' 4 '
3
EP a E a
R

πγ= −    (8.24) 

  Conical indentation 

 1 2tan 2
2 '

h a a
E

π β πγ= −    (8.23’) 

 

2 3 2

3 4
1 2

' tan 4 '
2

' 'tan 4
2

EP a E a

E EA A

β π πγ

γβ
π

 = − 
 

 = − 
 

  (8.24’) 

in which ( )2A aπ=  stands for the contact area. Substitution of 0=γ  

into the above formulas naturally reduces them to those of purely elastic 

body that we have already derived in Secs. 3.2 and 3.3.  The use of the 

instrumented indentation microscope (see the details in Sec. 11.3) makes 

us possible for determining not only the indentation load P   and the 

penetration depth h ,  but also for measuring the contact radius a  and 
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the contact area A  in experiment. We, therefore, readily determine in 

experiment the quantitative values of 'E  and  γ  without using any 

undesirable approximation and assumption. As readily seen in Eqs. (8.23) 

- (8.24’), however, the P  - h   relationship can only be obtained in an 

implicit manner via the contact radius a  as its intermediate variable.  

  In order to understand the role of surface adhesion in the indentation 

contact mechanics, Figs 8.2(a) and 8.2(b) demonstrate the P  - A  

relations (Eq. (8.24’)) of conical indentation for the elastic bodies with 

surface adhesion.  In Fig. 8.2(a), the linear P - A  relation   indicates 

( )' tan 2P E Aβ=   of the perfectly elastic body without surface 

adhesion ( 0=γ N/m). As clearly seen in Fig. 8.2, with the increase in the 

adhesive energy γ  and with the decrease in the elastic modulus 'E , 

the effect of surface adhesion on the contact behavior becomes 

progressively more significant, leading to the enhanced nonlinearity in 

their P - A  relations. 

  The normalized expressions of Eqs. (8.23) – (8.24’) will lead us to 

deeper and more comprehensive understanding for the role of surface 

adhesion in the indentation contact mechanics. As readily seen in Fig. 

8.2, since the adhesive force pulls the surface into contact, the indentation 

load has a minimum value of cP  at the critical contact radius ca , i.e., 

( )
c

0adP da =  . In this textbook, we adopt ca  , cP  , and the critical 

penetration depth ( )( )c ch h a=  as the critical parameters in normalizing 

Eqs. (8.23) – (8.24’) (notice that we will use the absolute values of cP  

and ch  , whenever these parameters are negative). These critical 

parameters thus defined are summarized as follows;  

 
  Spherical indentation 

 

1 32

c

c
1 32 2

c 2

9
4 '

3

3
16 '

Ra
E

P R

Rh
E

πγ

πγ

π γ

 
=   
 

= −

 
= −  

 

   (8.25) 

Figure 8.2 The P  - A   relations 

of conical indentation for the elastic 

bodies with surface adhesion: 
(a) 'E =5kPa; γ =0N/m～4N/m  

(b) 1γ = N/m; 'E = 1kPa～10kPa 
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Conical indentation 

 

c 2

3 2

c

c

36
' tan

6
tan '

6
' tan

a
E

P
E

h
E

γ
π β

γ
π β
γ

β

=

 = − 
 

=

   (8.25’) 

The normalized P  - a   and h  - a   relations thus derived in terms of 

these critical parameters are given by 

  Spherical indentation 

 
3 3/2

N N N
2 1 2

N N N

2

3 4

P a a

h a a

= −

= −
   (8.26) 

  Conical indentation 

 
2 3/2

N N N
1 2

N N N

3 4

3 2

P a a

h a a

= −

= −
   (8.26’) 

where Na , NP , and Nh  indicate, respectively, the normalized contact 

parameters of N ca a a=  , N cP P P=  , and N ch h h=   (spherical 

indentation) or N ch h h=   (conical indentation).  On the other hand, 

the NP  - Nh  relation is numerically given in an implicit manner via 

the contact radius Na  as its intermediate variable via Eq. (8.26) or Eq. 

(8.26’). These normalized expressions thus obtained are plotted in Fig. 

8.3; the closed circles (●) are the normalized relations of Eq. (8.26’) 

(conical indentation), while the open circles (○) indicate Eq. (8.26) 

(spherical indentation).  Furthermore in Fig. 8.3, the solid lines 

represent the elastic body with surface adhesion, and the broken lines are 

for without surface adhesion.  Due to the face-contact of spherical 

indentation while the point-contact of conical indentation in their initial 

stages of indentation contact, the surface adhesion makes more 

significant effect on the spherical indentation contact than that of conical 

indentation, as well recognized in Figs. 8.3(a) and 8.3(c).   
 
 
 

Figure 8.3 Normalized indentation 

contact diagrams; the solid lines 

indicate the adhesive contact (JKR 

theory), while the broken lines are 

those of the elastic body without 

surface adhesion  
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[FEA-Based Numerical Studies] 

  The numerical results of Finite Element Analysis (FEA) of the 

loading/unloading P - A  relations for the perfectly elastic bodies are 

shown in Fig. 8.4 (Vickers/Berkovich-equivalent cone indentation for the 

penetration depth up to max 30h = μm). Both the loading and the 

unloading P - A  relations of the elastic body without surface adhesion 

( ' 20E =  kPa, 0.0γ =  mJ/m2; ● symbol) are linear and coincide with 

each other, where the dashed linear line is the analytical solution of 

( )' tan 2P E Aβ= . On the other hand for the elastic body with surface 

adhesion ( ' 20E =  kPa, 5.0γ =  mJ/m2; 〇  symbol), however, a 

significant hysteresis is observed in its P  - A   loading/unloading 

relation, although the body is perfectly elastic. It must be noticed in their 

loading P - A  relations that the indentation load of the elastic body with 

surface adhesion is always as well as significantly smaller than that 

without surface adhesion. This is resulted from the fact that the surface 

adhesion pulls the tip of indenter downward to the contact surface, i.e., a 

negative force is superimposed on the externally applied indentation load.  

It will be also worthy of note that the contact area at the maximum depth 

of indentation ( max 30h = μm) is about max 100A ≈  (x 100μm2) for the 

elastic body without surface adhesion, while it is about max 180A ≈

(x100μm2) for the elastic body with surface adhesion, i.e., about 1.8 times 

larger in its contact area under surface adhesion: The JKR-theory predicts 

this effect of surface adhesion on the contact radius as readily seen in Fig 

8.3(c), although the JKR-theory cannot predict the unloading P  - A  

path. 
  As readily seen in Fig. 8.4, the FEA-based numerical results (the 

symbols 〇) well signify the JKR-theory (the dashed P - A  path: Eq. 

(8.24’) ); 

 3 4
E

' tan
2

EP A Aβ λ = − 
 

, (8.27) 

where Eλ is defined with  

 E 1 2
'4 Eγλ

π
= , (8.28) 

 
Figure 8.4 The effect of surface 

adhesion on the P  - A   loading/ 

unloading relations (FEA-based 

numerical results for the Vickers/ 

Berkovich equivalent cone). The 

symbols 〇  and ● indicate the 
results of the elastic bodies ( ' 20E =

kPa) with ( 5.0γ =  mJ/m2) and 

without ( 0.0γ = ｍ J/m2) surface 

adhesion, respectively. The dashed 

lines indicate the JKR-theory (Eq. 

8.24’) 
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being referred to as the adhesion toughness (the subscript E indicates 

Elastic) that stands for the fracture toughness of interfacial delamination 

between the tip-of-indenter and the material indented. The physical 

dimension of Eλ  is  [Pa・m1/2] that is the same as the mode-I fracture 

toughness, ( )Ic 2 'K Eγ≡ . 
 
8.2 ELASTOPLASTIC BODIES                  

WITH SURFACE ADHESION  
- FEA-Based Numerical Analyses- 

The plastic deformation and flow will lead to the mechanical processes 

that reduce the effect of surface adhesion on the elastoplastic contact 

mechanics. Suppose an elastic body with the elastic modulus 'E  and an 

elastoplastic body with the same elastic modulus 'E   along with the 

yield stress Y , and then inspect the effect of surface adhesion on the 

normalized indentation load ( ) ( ) ( )0
A

P P Pγ γ γ − =   of these two 

elastic and elastoplastic bodies;   the normalized indentation load is 

defined by the indentation loads of ( )P γ   and ( )0P γ =   with and 

without surface adhesion at a given contact area A . Due to the reducing 

surface adhesion under plastic flow of the contact surface, the normalized 

indentation load ( ) ( ) ( )0
A

P P Pγ γ γ − =   of the elastoplastic body 

will always be smaller than that of the perfectly elastic body. To confirm 

this plastic effect on the adhesion toughness, the FEA-based numerical 

results are plotted in Fig. 8.5, indicating that the plastic flow reduces the 

effect of adhesion on the P - A  loading/unloading relation.  
Based on these FEA-based numerical studies, the JKR-theory (Eq. 

(8.27)) of perfectly elastic body can be modified into the following 

formula through including the plastic contribution to the indentation 

contact of elastoplastic body;  

 3 4
M EPP H A Aλ= −   (8.29) 

in which MH   stands for the Meyer hardness, and the elastoplastic 
adhesion toughness EPλ  is defined by 

 EP
EP 1 2

'4 Eγλ
π

=   (8.30) 

 
Figure 8.5  

P - A   loading/ unloading relations 

(FEA-based numerical results) of  

 (a) perfectly elastic bod 

' 20.0E = kPa, and 

(b) elastoplastic body 

' 20.0E = kPa， 2.0Y = kPa 
The open circles (○) and the closed 

circles (● ) indicate the P  - A
relations  

with ( 5.0γ = mJ/m2) and  

without ( 0.0γ = mJ/m2) 

surface adhesion, respectively 
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In Eq. (8.30), EPγ   represents the elastoplastic surface adhesion 

(adhesion energy), although we have none of analytical formulas to 

corelate it to the yield stress Y . To circumvent this difficulty, therefore, 

we have to rely on the FEA-based approaches.  

 The FEA-based numerical results of elastoplastic bodies ( 20E =  kPa; 

1.0 kPa Y≤ ≤  5.0 kPa) are shown in Fig. 8.6, indicating that the 

elastoplastic adhesion energy EPγ   monotonically decreases with the 

decrease in the yield stress Y  , i.e., with enhancing plastic flow; EPγ  

approaches to γ  , i.e., EPγ γ→  with the increase in Y  , while it 

diminishes to zero, i.e., EP 0γ →  , with the decrease in Y  . The 

correlations of the elastoplastic adhesion toughness 

( )( )2
EP EP' 16Eλ π γ≡   and the surface energy γ   of elastoplastic 

bodies with various value of E   and Y   are shown in Fig. 8.7.  As 

readily seen in Figs. 8.6 and 8.7, the FEA-based numerical studies for the 

adhesive elastoplastic indentation contact problems lead to the following 

conclusions;  

(i) both the elastoplastic adhesion toughness EPλ  and the adhesive 

surface energy EPγ  decrease with the decrease in the yield stress 

Y , i.e., with enhancing plastic flows, 

 (ii) these elastoplastic adhesion parameters increase to the values 

of perfectly elastic body, i.e., EPγ γ→  and EP Eλ λ→ ,  with the 

increase in the yield stress Y , leading to the perfectly elastic JKR-

theory. 

 

Figure 8.8 shows the ( 2
EP 'Eλ  vs aγ γ )-master curve that is made by 

horizontally shifting the respective 2
EP 'Eλ   vs γ   curves having 

various values of E   and Y   in Fig. 8.7 along the logγ  -axis to 

superimpose on the perfectly elastic JKR-curve. The superposition is 

satisfactory as readily seen in Fig. 8.8, where the shift factor aγ  stands 

for the amount of horizontal shit in superposition, and is related to the 

elastoplastic adhesion energy EPγ  as follows; 

 EPaγ = γ γ   (8.31) 

 

Figure 8.6 Correlation between the 
elastoplastic surface energy EPγ  

and the yield stress Y   of the 
elastoplastic bodies ( 20E = kPa) 
(FEA-based numerical results) 
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There may exist a well-defined relationship between the shift factor aγ  

and the plastic index ( )I 'PI E cYε≡  (refer to Chap. 5), being expected 

that 

 1aγ →  ( EPγ γ→ ) for 0PI ↓  (perfectly elastic) 

 0aγ →  ( EP 0γ → ) for PI ↑ ∞  (fully plastic) 

The relationships between aγ  and ( )I 'PI E cYε≡  are shown in Fig. 

8.9 (the FEA-based numerical results); the best-fitted empirical formula 

of this relation is given by  

  ( )1 3.5 ; 0.286a PI PIγ = ≥   (8.32) 

 

 
 
 
 
 
 
 
 
 
 

Figure 8.8 2
EP 'Eλ   vs EPγ   master 

curve made by horizontally shifting the 

respective 2
EP 'Eλ  vs γ   curves in 

Fig. 8.7 and superimposing onto the 

perfectly elastic JKR-curve (the dashed 

line)   
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Figure 8.9 Correlation between the 
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Fig. 8.7 to make the master curve shown 

in Fig. 8.8 (FEA-based numerical 

result). The dashed line indicates the 

best-fitted empirical relation of 

( )1 3.5a PIγ =  (Eq. (8.32)) 
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8.3 VISCOELASTIC BODIES 
 WITH SURFACE ADHESION  
 

(1) Load relaxation (cone/pyramid indentation) 
Applying the “elastic-viscoelastic corresponding principle” to the 

JKR-theory leads to the following constitutive equation of viscoelastic 

bodies with surface adhesion in Laplace-space; 

3 4
VE

'* ( ) tan( ) ( ) *( ) ( )
2

E pP p A p p A pβ λ = − 
 

 (8.33) 

where ( )P p ， ( )A p ， '* ( )E p ，and VE * ( )pλ  are, respectively, defined 

with  

 
0

( ) ( ) ptP p P t e dt
∞ −=   

 
0

( ) ( ) ptA p A t e dt
∞ −=   

 relax0
'*( ) '( ) ptE p p E t e dt

∞ −=   

 
( )VE VE0

relax1 2 0

* ( )

4 ' ( )

pt

pt

p p t e dt

p E t e dt

λ λ

γ
π

∞ −

∞ −

=

=




 

The invers Laplace transform of Eq. (8.33) for viscoelastic bodies with 

surface adhesion, therefore, results in the following constitutive equation 

in real space; 

 
relax0

3 4

relax1 2 0

tan ( ')( ) ' ( ') '
2 '

(t')4 ' ( ') '
'

t

t

dA tP t E t t dt
dt

dAE t t dt
dt

β

γ
π

 = − 
 

− −




      (8.34) 

 Let us suppose, as an example, the indentation load relaxation test 
under the stepwise application of contact area to 0A ; 

 0( ) ( )A t u t A= , ( )u t ; Heaviside step-function (8.35) 

and then inspect the effect of surface adhesion on the load relaxation. 

Substituting Eq. (8.35) into Eq. (8.34) along with noticing the relation of 
( ) ( )du t dt tδ= （ ( )tδ : Dirac’s delta function）, we finally have the 

following expression for the indentation load relaxation of cone/pyramid 

indentation; 
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0 relax

3 4
0 relax1 2

tan( ) ' ( )
2

4 ' ( )

P t A E t

A E t

β

γ
π

 =  
 

−
 (8.36) 

In order to simply the subsequent numerical analyses, by way of example, 

the Maxwell viscoelastic liquid, 

 relax' ( ) ' expg
tE t E
τ

 = − 
 

 (8.37) 

and the Zener viscoelastic solid. 

 ( ) ( )e g e' ' ' ' exp tE t E E E
τ

 = + − − 
 

 (8.38) 

are applied to Eq. (8.36) for examining the effect of surface adhesion on 

the load relaxation behavior of ( )P t  vs t ; the results are demonstrated 

in Fig. 8.10 for the Maxwell liquids ( g' 20E = kPa， 50τ = s) and in Fig. 

8.11 for the Zener solid ( g' 20E = kPa, e' 5E = kPa, 50τ = s) with and 

without surface adhesion for Vickers/Berkovich-equivalent cone 

indentation ( 19.7β =   , 7
0 2 10A −= ×  mm2). It will be worthwhile 

noticing in Figs. 8.10 and 8.11 that the surface adhesion yields the 

negative indentation load, i.e., 0P < , due to the adhesive force at the 

contact interface, and the time to the complete load relaxation or to the 

steady-state , i.e., the time to 0P →  or 0dP dt → , is shifted to 

longer side with the increase in the surface adhesion γ .   
 
(2) Creep deformation (spherical indentation) 
  The P  vs a  relation of perfectly elastic bodies for spherical 

indentation (JKR-theory; see Eq. (8.24)) 

   3 3 24 ' 4 '
3
EP a E a
R

πγ= −        (8.42) 

can be recast into the following quadratic equation in terms of the variable

( )3 2x a≡ ; 

 24 ' 4 ' 0
3
E x E x P
R

− πγ − = , (8.43) 

and then be solved as 

Figure 8.11 Effect of surface 

adhesion on the indentation load 

relaxation curve of the Zener 

viscoelastic solid  

(stepwise application of the contact 

area to 7
0 2 10A −= × m2) 
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relaxation curve of the Maxwell 

viscoelastic liquid 
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 ( ){ }3
24 ' 1 2

3
a C P k k k
R

= + + +   (8.44) 

in which 

 
' 1 '

3

C E
k P

Rπ γ

=
= Γ

Γ = ⋅
  (8.45) 

＊ 'E : elastic modulus， 'C : compliance 
Γ : adhesion force 
γ : surface adhesion (adhesive energy) 

R : radius of spherical indenter 

The application of “elastic-viscoelastic correspondence principle” to Eq. 
(8.44) under stepwise indentation load 0( ) ( )P t P u t=  ( ( )u t : Heaviside 

step-function) along with the Laplace transform and its inversion finally 

results in the following constitutive equation for creep deformation and 

flow;  

( ) ( ) ( ) ( ){ }
3

0 2
0 0 0 0

0

4
' 1 2

3
a t

t C t k k k
RP

α
 
 ≡ = + + +
 
 

  (8.46) 

where ( )'C t   stands for the creep function and the subscript “0” 

indicates the stepwise indentation loading to 0P . Substituting 0 0k = , 
i.e., 0γ = , in Eq. (8.46) yields 

 ( ) ( )3
0 0

3 '
4
Ra t C t P= ⋅   (8.47) 

that describes the creep deformation and flow of linear viscoelastic 

bodies without surface adhesion; there exists a linear relation of 

( )3a t P∝  under stepwise spherical indentation. As readily seen in Eq. 

(8.46), however, the surface adhesion violates this linear relationship 

even if the indented body is linear viscoelastic. It must be also noticed 

that Eq. (8.46) can be rewritten with 

   ( ) ( )3 3 'a t RC t= ⋅ Γ   (8.48) 
when the adhesion force Γ  is large enough and/or the applied load P  

is small enough, i.e., 1k  .  In other words, due to the surface 

adhesion that pulls the tip-of-indenter toward the material’s surface, the 

finite creep deformation/flow will be observed even under the dead load 

of 0P ≡ .  
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In order for further examining the effect of surface adhesion, let make 

numerical considerations on the creep deformation and flow of the 

following Zener viscoelastic solid;  

 ( ) ( )e g e' ' ' ' exp tC t C C C
τ

 = + − − 
 

  (8.49) 

with g' 0.01C =  mPa-1 ， e' 0.035C =  mPa-1, and 200τ =  s. The 

numerical results of the creep curve ( )3a t  vs. t  are shown in Figs. 

8.12 and 8.13, leading to the following important conclusions as to the 

effect of surface adhesion on the creep deformation/flow; 

 (1)  ( )3a t -creep curve is not linearly proportional to the applied 

  indentation load P  
 (2)  creep deformation is enhanced with the increase in the 

 surface adhesion 
(3)  significant creep is observed even under the dead-load of 0P ≡  

Figure 8.13 Creep curves of the 

viscoelastic Zener solid with surface 

adhesion under stepwise loading of 

spherical indentation ( R =3.0mm; 
P =0.1mN). The curves are γ =4.0, 

2.0, 1.0, and 0.0mN/m from the top 

to the bottom 
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Figure 8.12 Creep curves of the 

viscoelastic Zener solid with surface 
adhesion ( 10γ = mN/m) under 

stepwise loading of spherical 

indentation ( R =3.0mm). The curves 
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INDENTATION CONTACT MECHANICS 
     OF COATING/SUBSTRATE COMPOSITE 
 
 Japanese craftworks “SHIKKI” (Japanese lacquered crafts), potteries 

(glazed ceramics), plated metals, etc. are all the typical examples of 

coated materials/arts that have long been making our daily lives enriching 

and comfortable.  Painted walls and adhesive tapes, by way of example, 

are also classified as coating/substrate composites; the paint (coating) not 

only protects the walls (substrate) from hostile environments, but also 

make the wall more tactile; the adhesive coating makes the substrate more 

functional. The thickness of these coating films is in the range from 

nanometer to sub-millimeter.  This fact makes the experimental 

determination of film-only mechanical characteristics critically difficult, 

thus remaining much works/problems/ issues for use to overcome. 

 On the other hand, as readily expected from the considerations we 

made in the preceding chapters, the science of indentation contact 

mechanics combined with the instrumented indentation apparatuses will 

provide a powerful tool for experimentally determining the mechanical 

characteristics of coating/substrate composites in their micro/ nano-

regions. The theoretical formulation of the indentation contact mechanics 

of coating/substrate composites will be given in this chapter, though its 

present status is still immature [9.1-9.5]. The details of experimental 

techniques/analyses for determining mechanical properties of 

coating/substrate composite will be given in Chap. 11. 

 
9.1 ELASTIC COMPOSITES  
 The mathematical formulation of indentation contact mechanics is 

fully established for the laminate of an elastic film coated on an elastic 

substrate.  Figure 9.1 depicts the geometrical details of a conical 

indenter pressed onto (a) an elastic half-space (file-only half-space), and 
(b) a film having the thickness ft   coated on an elastic substrate 

extending to a half-space.  The elastic moduli and the Poisson’s ratios 
of the film and the substrate are denoted by ( fE  , fν  ) and ( sE  , sν  ), 

respectively. At a given penetration depth h  , the induced indentation 
loads and the associated contact radii are described by ( fP , fa ) and 

 ( P , a ) for the film-only half-space and for the laminate composite, 

[9.1] C.H. Hsueh, P. Miranda, J. Mater.  
     Res., 19[1], 94 (2004) 
[9.2] C.H. Hsueh, P. Miranda, J. Mater. 
     Res., 19[9], 2774 (2004) 
[9.3] H.Y. Yu, S.C. Sanday, B.B. Rath, J. 
     Mech. Phys. Solids, 38[6], 745 (1990) 
[9.4] F. Yang, Mater. Sci. Eng., A358, 226 
     (2003) 
[9.5] M. Sakai, J. Mater. Res., 24[3], 831 (2009) 

  

P

Ef, υf

Es, υs

tf h
2a

β

(a) homogeneous half-space

(b) film/substrate composite

Pf

Ef, υf

h

2af

β

 

Figure 9.1 Geometrical details of a 

conical indenter pressed onto  

(a) homogeneous half-space 

  (i.e., film-only half-space), and

 (b) film/substrate composite 
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respectively.  When the thickness of the film is much larger than the 
penetration depth, i.e., ft h>> , we can neglect the substrate effect on the 

contact behavior, leading to the perfectly elastic indentation contact 

mechanics of a homogeneous half-space of the film, the details of which 

are already given in Eqs. (3.33) and (3.34) (see Chapter 3, Tab. 3.1); 

 f f ' n
hP k E h=  (9.1) 

 
( )

( )

1
f H

1

n

n n

a a Bh

cP

−

−

≡ =

=
 (9.2) 

Due to the fact that the frontal factor B  in Eq. (9.2) of a perfectly elastic 

half-space is independent of the elastic modulus (see Tab. 3.1), it must be 
noticed that the indentation contact radius fa  of the elastic film can be 

described in terms of  the contact radius Ha  of a homogeneous elastic 

body having arbitrary elastic modulus (the subscript H stands for 

“homogeneous”).  

  On the other hand, in the cases of ft h≈  and ft h< , as shown in Fig. 

9.2, the indentation contact behavior is significantly affected by the 

substrate. Figure 9.2 demonstrates the substrate-effect on the indentation 

contact behavior for the coating/substrate composite with f sE E<< , as 

an example. We must keep in mind the fact that there is a significant 

discrepancy in their contact behaviors of coating/substrate composite 

under a fixed depth h   of penetration and under a fixed load P   of 

indentation. As a matter of fact, as shown in Fig. 9.2, the substrate has an 

affect in an entirely different manner on the indentation contact behavior 

of ( )f hP P  and ( ) ( )f Hh ha a a a ≡   observed under a fixed depth h  

of penetration, or of ( )f Ph h  and ( ) ( )f HP Pa a a a ≡   under a fixed 

load P   of indentation.  It should be noticed, in particular, 

( ) ( )H Hh P
a a a a≠  ; this inequality will play an essential role in 

understanding the effective elastic modulus of laminate composites that 

we discuss in the following considerations.  

  In order to discuss the indentation contact behavior of elastic 

coating/substrate composites in a phenomenological manner, let us now 

introduce the concept of effective elastic modulus ( )eff f'E t a  to 

P
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Pf
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2af
Ef

Ef<<Es
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Ef

P

hf

2af
Ef

(a) under a fixed depth of penetration, h

(b) under a fixed  load of indentation, P

2a

h

Es

Ef<<Es  

Figure 9.2 Substrate-effect on the 
laminate composite with f sE E<<  

for the indentations (a) under a fixed 
indentation depth h , and (b) under a 

fixed indentation load P  
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Eq. (9.1) as follows;    
  ( )eff f' n

hP k E t a h=  (9.3) 
where the effective elastic modulus ( )eff f'E t a  satisfies the following 

extremes; 

 ( )
f

eff f flim ' '
t a

E t a E
→∞

=  

 ( )
f

eff f s0
lim ' '

t a
E t a E

→
=  

Accordingly, through Eqs. (9.1) and (9.3), the normalized values of 
indentation load ( )f hP P   and penetration depth ( )f Ph h   are, 

respectively, given by    
 ( )f eff f' 'hP P E E=  (9.4) 

 ( ) ( )1f
eff f

1
' nPh h

E E
=  (9.5) 

 In our next step of mathematical formulations through the Boussinesq 

Green function, we will make an analytical derivation of the effective 
modulus ( )eff f'E t a  that has been phenomenologically defined in Eq. 

(9.3). The contact problem of a concentrated point load P  applied on 

an elastic half-space having the elastic modulus E   and the Poisson’s 
ratio ν  was first solved by J. Boussinesq in 1885 [1.1, 9.6]. The problem 

is reduced to the elastic contact of a flat-ended cylindrical punch with 
radius 0a   (see Sec. 3.1) in its extreme of 0 0a →  , leading to the 

following result of the displacement gradient zu z∂ ∂ ;   

( )
( )

( )
( )

2

5 3
2 2 2 22 2

1 3 3 2
2

z Pu r z z
z E r z r z

ν
ν

π

 +∂  = − − ∂ + +  

 (9.6) 

Integrating both sides of Eq. (9.6) along the z  -axis of the elastic 

composite shown in Fig. 9.3, we finally have the contact surface-
displacement ( , 0)zu r z =  induced by the concentrated force P  [9.1, 

9.2];  

[9.6] J. Boussinesq, “Application des potentials 
á l’etude de l’équilibre et du mouvement des 
solides élastiques”, Gauthier-Villars (1885) 
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Ef, υftf h

( ),0zu r

Es, υs

Figure 9.3 The Boussinesq problem 

of an elastic coating/substrate 

composite under a concentrated load 

P   
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 

 (9.7) 

Equation (9.7) is the so-called Boussinesq Green function ( ), ; ,i iG r z E ν  

of the coating/substrate composite, providing a basic equation in order to 

make the mathematical formulation of spherical/conical indentation 

contact mechanics, the details of which will be given in the following 

considerations. 

  Combining Eq. (9.7) with the indentation contact pressure distribution 

( ) ( )( ),0zp r rσ≡ −  ( r a≤ ; contact radius a) (refer to Chap. 3 (Fig. 3.5, 

Tab. 3.1)) for the conventional axisymmetric indenter’s geometry, the 

penetration depth h  of the elastic laminate can be described in terms of 

( )p r   as the integration of the contact displacement 

( )( )( , 0) , ; ,z i iu r z G r z E ν= ≡  along the z -axis; 

 ( )
0

( ) , ; , 2
a

i ih p r G r z E rdrν π=   (9.8) 

Accordingly, substituting Eq. (9.7) into Eq. (9.8), and furthermore using 
Eq. (9.4), we finally have the effective elastic modulus ( )eff f'E t a  as a 

function of the normalized film thickness ξ   ( ft a=  ) along with the 

material characteristics ( f'E  , fν  ) of the film and ( s'E  , sν  ) of the 

substrate; 

( ) ( ) ( )

( ) ( ) ( ){ }

1
s

s 1 2
seff f

ff f 0
f 1 2

f

1 3 2
' '1

1' 2 3 2h

I I
EE EP

E P I I I
E

ν ν ξ ξ

ν ν ξ ξ

−
 +  − −        ≡ = +      +      − − −     

(9.9)  

where 0I , 1( )I ξ , and 2( )I ξ  are respectively defined by  
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( ) ( )
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1
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1
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I p d

I p d

ρ ρ

ρξ ρ ρ
ρ ξ

ρξ ρ ρ
ρ ξ

=

=
+

=
+







 (9.10) 

in terms of the normalized contact pressure distribution N ( )p ρ ： 

 
( )N

2

( ) ;

;
m

m

p p r p

p P a r a

ρ

π ρ

=

= =
 

In the extreme of thick film, i.e., ( )ft a ξ ↑ ∞ ,  since there exists the 

relation of ( ) ( )1 20I Iξ ξ= = , Eq. (9.9) naturally leads to eff f' 'E E= , 

and the coating film dictates the indentation contact behavior of the 

laminate composite. On the other hand, in the extreme of thin film, i.e., 

( )f 0t a ξ ↓ , we have the relation of ( ) ( )1 2 0I I Iξ ξ= = , resulting in 

eff s' 'E E= ; the substrate characteristics dominate the contact behavior of 

the composite. The analytical formulas of the functions of N ( )p ρ  ,

1( )I ξ , and 2( )I ξ  of the axisymmetric conventional indenters (flat-ended 

cylindrical punch, sphere, and cone) are listed in Tabs. 9.1 and 9.2. 
  The analytical expression for the contact pressure distribution N ( )p ρ  

is very essential prior to conducting the integral in Eq. (9.10), though we 
have no information on N ( )p ρ   of the substrate-affected laminate 
composite in an analytical manner. Accordingly, in Tab. 9.1,  ( )1I ξ  

and ( )2I ξ  are approximately calculated by the use of N ( )p ρ  for the 

homogeneous half-space (see Chap. 3; Tab. 3.1) neglecting the substrate-
effect.  Due to the fact of 0 1 2(0) (0)I I I= = , the integral 0I  is readily 

obtained from 1( )I ξ  or 2 ( )I ξ  with 0ξ = .  On the other hand, for a 

thin-film ( f 1t a << ) coated on a rigid substrate ( s'E ↑ ∞ ) as a specific 

case of laminate composites, since there exists the analytical expression 
of N ( )p ρ   [9.4], the analytical solutions of 1( )I ξ   and 2( )I ξ   is 

readily obtained, the results of which are also listed in Tab. 9.2. In Fig. 
9.4, the contact pressure distributions N ( )p ρ  of the homogeneous half-

space (the solid lines) and of the thin-film coated on a rigid substrate (the 

broken lines) are respectively plotted for comparison.  

  The elastic contact mechanics based on the preceding Boussinesq 
Green function ( ), ; ,i iG r z E ν  has the merit of providing the analytical 

Figure 9.4 Contact pressure 
distributions N ( )p ρ   of axi- 

symmetric indenters;  

the solid line:  

homogeneous half-space 

the broken line:  

a thin-film coated on a rigid 

substrate [9.4] 
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solution and its extension to the viscoelastic indentation contact 

mechanics via the elastic-to-viscoelastic correspondence principle. 

However, as mentioned above, there is a critical difficulty in obtaining 
the analytical solution for the contact pressure distribution N ( )p ρ   of 

substrate-affected laminate composite.  

  In contrast to the analytical solution based on the Boussinesq Green 

function given in the preceding considerations, on the other hand, we can 

get the numerical solution of the elastic contact mechanics of 

coating/substrate composites in a quantitative manner  through the 

Fredholm integral equation; we first express the stresses/strains of the 

coating film and the substrate using the characteristic harmonic function 

(Papkovich-Neuber function) followed by the Hankel transform (refer to 

Chap. 3), and then we finally derive the following Fredholm integral 

equation of the second-kind [9.3];  

   ( ) ( )1

0

1( ) ( ) ( )H K y K y H y dy Fρ ρ ρ ρ
π

− + + − =    (9.11) 

In Eq. (9.11), ( )H ρ   stands for the non-dimensional function 

expressing the indentation contact pressure distribution.  The kernel 
( )K y   of the integral includes the information of the material 

characteristics ( fE  , fν  ), ( sE  , sν  ), and the normalized film thickness 

( )ft aξ = . The function ( )F ρ  describes the geometry of the indenter; 

 ( ) 1F ρ = ； flat-ended cylinder 

 ( )2( ) 1F ρ γρ= − ；   sphere 

 ( ) 1F ρ γρ= − ；    cone 
in which γ  stands for the relative contact radius ( )H ha a  at a given 

depth of penetration h   as shown in Fig 9.2(a), i.e., ( )H ha aγ =  

( ( )f ha a≡  ).  The solution ( )H ρ   of Eq. (9.11) is related to the 

normalized contact load ( )f hP P , as follows; 

 ( )1eff
0

f f

'
'h

EP c H d
P E

ρ ρ
   

≡ =   
   

  (9.12) 

The frontal factor c   in Eq. (9.12) is the indenter’s tip-geometry 

dependent coefficient; 1c =  , 3/2, and 2 for the flat-ended cylindrical 

punch, spherical indenter, and the conical indenter, respectively. As 

readily seen in Eq. (9.11), the integral equation includes the unknown 

93



parameters of ( )H ha aγ = , ( )H ρ , and ( )f hP P  of the film/ substrate 

composite that we are interested in. 

  In the first step of solving the integral equation (Eq. (9.11)), we 

transform the integral equation into the linear simultaneous algebraic 

equations by expressing the unknown function ( )H ρ  in terms of the 

Chebyshev series expansion, and then we substitute ( )F ρ  with 1γ =  

as its initial value into this algebraic equations, leading to the zeroth-

order-solution ( )H ρ  . In the next step, we repeat the preceding 

numerical procedures by systematically changing the γ -value until we 

finally get the solution ( )H ρ  having the boundary value of ( )1 0H =  

(meaning that the contact pressure diminishes outside the contact area 

( 1ρ ≥  )). The normalized elastic modulus of the laminate composite 

( )eff f f' ' hE E P P ≡   thus obtained by substituting the solution ( )H ρ  

into Eq. (9.12) is plotted in Fig. 9.5 against the normalized thickness 

ft a   of the coating film for various values of the modulus-ratio 

s f' 'E E . We also plot in Fig. 9.5 the analytical solution (Eq. (9.9)) (the 

solid lines) derived from the Boussinesq Green function with the contact 

pressure distributions N ( )p ρ  for the homogeneous half-space (see Tab. 

9.1, Fig. 9.4), excepting the results of the composite s f' ' 100E E = for 

which we utilize N ( )p ρ  of the thin-film coated on rigid substrate (see 

Tab. 9.2, Fig. 9.4). As readily seen in Fig. 9.5, the analytical solution (Eq. 

(9.9); the solid lines) with the approximated N ( )p ρ   rather faithfully 

realizes the precise numerical solution of the Fredholm integral equation 

(Eq. (9.11); the respective symbols with broken line). In particular for 

spherical indentation contact, the coincidence between both of the 

numerical and the analytical results is satisfactory. Figure 9.5 furthermore 

demonstrates that the effective elastic modulus eff'E   naturally 

converges to the modulus of the substrate s'E , i.e., eff s' 'E E→ , in the 

extreme of thin film or major penetration ( f 0.1t a < ), while it converges 

to the modulus of the coating film f'E , i.e., eff f' 'E E→ , in the extreme 

of thick film or minor penetration ( f 50t a > ).  As has been given in 

Eq. (9.5), noticing the relation of ( ) ( )1
f eff f1 ' ' n

Ph h E E=  , we can 

readily describe the normalized penetration depth ( )f Ph h  under a fixed 

Figure 9.5 Normalized effective 

elastic modulus of coating/substrate 

composites plotted against the 

normalized film thickness. The 

symbols with broken line are the 

numerical results of the Fredholm 

integral equation (Eq. (9.11)), and the 

solid lines are the analytical results of 

the Boussinesq Green function (Eq. 

(9.9)) 

10-1

100

101

flat-punch

10-1

100

101

N
or

m
al

ie
d 

ef
fe

ct
iv

e 
el

as
tic

 m
od

ul
us

, 
E

' ef
f /

E
' f [

(=
P

/P
f) h

]

spherical indenter

: E's/E'f=100
             5
             2
             1
             0.5
             0.1

10-1 100 101 102

10-1

100

101

conical indenter

Normalized film-thickness, t f /a

94



indentation load P   in terms of the modulus ratio eff f' 'E E   via its 

numerical or analytical solution given in Eqs. (9.9) and (9.12), and in Fig. 

9.5.  

  As mentioned in Chap. 3 for the elastic indentation contact mechanics 

of a homogeneous body, its free surface outside the indentation contact 

zone always exhibits sinking-in along with the penetration of the indenter, 

resulting in the relation of c 1h h <  (see Tab. 3.1) irrespective of the tip-

geometry of the indenter we used. On the other hand, for 

coating/substrate composites, their surface profiles are significantly 

affected by the modulus ration s f' 'E E . Figure 9.6 shows the details of 

the contact profiles (sink-in/pile-up) of laminate composites having 

various values of s f' 'E E  , in which the normalized contact radius 

( )H ha aγ  ≡    is numerically determined through the iteration 

procedure in solving Eq. (9.11) as mentioned in the preceding 

considerations [9.3]. 

 

 

 

 

 

 
Figure 9.6 Effect of substrate on the normalized contact radius ( )H ha aγ  ≡   

        (numerical solutions of the Fredholm integral equation) 
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As shown in Fig. 9.6, the relation of ( )H ha a   vs. ft a   for the 

composites with s f' ' 1E E >   is convex upward, while it is concave 

downward for s f' ' 1E E <  at around f 1t a ≈ ; in the former, the major 

of penetration-induced deformation at the fixed depth of penetration h  

is accommodated in the coating film due to the stiffer substrate, resulting 

in suppressing the sink-in or in inducing the pile-up of the free-surface 

outside the contact zone, while in the latter, due to the more compliant 

substrate, the major of penetration-induced deformation at the fixed depth 

of penetration h   is accommodated in the substrate, resulting in the 

enhanced sink-in of the free-surface. In the conical indentation as an 

example, noticing the fact that the relative contact depth ch h   of a 

homogeneous elastic half-space is given by 2 π  (see Tab. 3.1), the 

preceding considerations lead to the following expression for the 

coating/substrate composite;  

 c

H

2

h

h a
h aπ

 
=  

 
 

Accordingly, using the results shown in Fig. 9.6 for the composite with 

s f' ' 5E E = , by way of example, the relative contact depth ch h  at the 

penetration of f 1t a ≈  is given by ( )c 2 1.28 1.0h h π≈ × ≈ , implying 

none of sink-in nor pile up. Furthermore, for the composite having a 

nearly rigid substrate ( s f' ' 100E E =   in Fig. 9.6), the relative contact 

depth becomes larger than 1.0, i.e., c 1h h >  , leading to an enhanced 

pile-up of the free-surface, like as the ductile plastic body that we have 

discussed in Chap.5 (see Figs. 5.6 and 5.7), although the composite is 

perfectly elastic. On the other hand for the laminate composite with very 

compliant substrate such as s f' ' 0.1E E =  , the normalized contact 

radius at f 1t a ≈   is ( )H 0.5ha a ≈   (see Fig. 9.6), and then 

( )c 2 0.5 0.3h h π≈ × ≈ , meaning an enhanced sink-in more than that of 

a homogeneous elastic body ( ( )c 2 0.637h h π= = ). 
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Table 9.2 The contact pressure distributions ( )Np ρ  of the axisymmetric indenters pressed onto a thin elastic 
film ( f 1t a << ) coated on a rigid substrate, based on which the integrals ( )1I ξ  and ( )2I ξ  are determined 
(see Eq. (9.10)) 

pN(r;a) I1(ξ) I2(ξ)

Flat-ended
cylinder 1

Sphere

Cone

22 1 ( / )r a−  

[ ]3 1 ( / )r a−

21 ξ ξ+ − 2

2

12( 1 )
1

ξ ξ
ξ

+ − −
+

2 2

3

2[(2/3)(1 ) 1
(2/3) ]

ξ ξ
ξ ξ
+ +

− −

2 2

3

4[(1/ 3)(1 4 ) 1
(4 / 3) ]

ξ ξ
ξ ξ

+ +

− −

{ }
2

2 2

3[(1/ 2) 1

(1/ 2) ln /(1 1 ) ]

ξ ξ

ξ ξ ξ

+ −

− + + { }
2

2 2

3[(1/ 2) 1 2

(3/ 2) ln /(1 1 ) ]

ξ ξ

ξ ξ ξ

+ −

− + +
 

Table 9.1  The contact pressure distributions ( )Np ρ   of the axisymmetric indenters pressed onto a 
homogeneous elastic half-space, based on which the integrals ( )1I ξ   and ( )2I ξ   are determined (see Eq. 
(9.10)) 

pN(r;a) I1(ξ) I2(ξ)

Flat-ended
cylinder

Sphere

Cone

2

1
2 1 ( / )r a−

23 1 ( / )
2

r a−

( )1cosh /a r−

1

2

1 sin
2 2 1

π ξ
ξ

−
  

−   +   

2 1

2

3 (1 ) sin
2 2 1

π ξξ ξ
ξ

−
     + − −    +    

2 1

2

3 (1 3 ) sin 3
2 2 1

π ξξ ξ
ξ

−
     + − −    +    

2
1

2
tan ln

2 2 1
π ξ ξξ

ξ
−− +

+

2
1

2
tan ln

2 1
π ξξ ξ

ξ
−− +

+

1
22

1 sin
2 2 11

π ξ ξ
ξξ

−
  

− −    ++   
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9.2 VISCOELASTIC COMPOSITES  
  Based on the “elastic-to-viscoelastic correspondence principle” (refer 

to Chap. 7), i.e., the linear viscoelastic constitutive equations in the 

Laplace-space coincide with those of perfectly elastic body in the real-

space, combined with the preceding considerations on the elastic 

laminate composites, we can rather easily extend the indentation contact 

mechanics of elastic laminate composites to that of viscoelastic 

composites [9.7]. 
The indentation load relaxation of a viscoelastic laminate composite 

under a stepwise penetration to the contact area 0A , i.e., 0( ) ( )A t A u t= ⋅ , 

is given by 

 0
tan( ) '( )

2
P t A E tβ= ⋅  (9.13) 

like as Eq. (7.6). In Eq. (9.13), we denote the relaxation modulus 

relax' ( )E t   by ( )'E t   for simplicity. Once we apply the “elastic-to-

viscoelastic correspondence principle” to Eq. (9.9), the relaxation 
modulus ( )eff'( ) ' ( )E t E t≡   of the viscoelastic laminate composite is 

described by 

( ) ( ) ( )

( ) ( ) ( ){ }

1
s

s 1 2
sf

ff f 0
f 1 2

f

1 3 2
( )' ( )'( ) ( ) 1

1' ( ) ( ) 2 3 2
( )

A

I I
E tE tE t P t

E t P t I I I
E t

ν ν ξ ξ

ν ν ξ ξ

−
 +  − −        ≡ = +      +      − − −     

  (9.14) 

where ( )2
f f f' ( ) ( ) / 1E t E t ν ≡ −    and ( )2

s s s' ( ) ( ) / 1E t E t ν ≡ −    are the 

relaxation moduli of the coating film and of the substrate, respectively. 

Due to the assumption of stepwise penetration 0( ) ( )A t A u t= ⋅  , the 

normalized film thickness ( )f 0t aξ ≡   ( 0 0a A π=  ) is a time- 

independent constant. As emphasized in Sec. 6.4, the Poisson’s ratio ν  

of viscoelastic body is time-dependent; by way of example for a 

viscoelastic liquid such as the Zener II model with e 0E =  in Eq. (6.8b), 

the Poisson’s ratio ( )(0) 0.1ν ≈   at the onset of stress relaxation 

monotonically increases with time to the value of ( ) 0.5ν ∞ ↑   in its 

steady-state, while its time-dependence is very minor for a viscoelastic 

solid ( e 0E ≠ ) (see Fig 6.10).  In this chapter, therefore for simplicity, 

we assume that the Poisson’s ratios of coating/substrate composites are [9.7] M. Sakai, Phil. Mag., 86[33-35], 5607 (2006) 
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time-independent having the values of f s 0.3ν ν= =  in Eq. (9.14). This 

assumption by no means results in any critical issues in discussing the 

viscoelastic contact mechanics of laminate composites.  
  Let us suppose the Zener II model (refer to Chap. 6, Fig. 6.2, and Eq. 
(6.8b)) with a single relaxation time of M'Eτ η= ,  

 ( )e g e

g e M

'( ) ' ' ' exp

' ' '

tE t E E E

E E E
τ
− = + −  

 
= +

 (9.15) 

in order to describe the relaxation moduli of f ( )E t   and s ( )E t   in Eq. 

(9.14). The Zener II model with e 0E =   is readily reduced to the 

Maxwell model.  We will discuss in what follows the viscoelastic 

contact mechanics of laminate composites subjected to a stepwise 

penetration to the contact area 0A   of a cone indentation, i.e.,

0( ) ( )A t A u t= ⋅  , or to the contact radius 0( ) ( )a t a u t= ⋅   with 

0 0a A π= . 
 

(1) Stress relaxation behavior of an elastic film coated on a 
viscoelastic substrate 
  The indentation load relaxation ( )P t   of a laminate for stepwise 

penetration of a cone indenter is well described in terms of the relaxation 
modulus ( )'E t  through the relation given in Eq. (9.13). The relaxation 

modulus ( )'E t   is shown in Fig. 9.7(a) for the laminate with 

f s' ' (0) 10E E= =  GPa as an example, i.e., for the laminate composite 

with the elastic modulus f'E  of the coating film matching to the glassy 
modulus ( )s' 0E   of the viscoelastic substrate.  On the other hand in 

Fig. 9.7(b), shown is the relaxation behavior of the laminate with the film 

modulus smaller than that of the glassy modulus and larger than the 
equilibrium modulus e'E  of the viscoelastic substrate, i.e., 

( )s f e s' (0) ' ' ( )E E E E> > ≡ ∞   ( f' 5E =  GPa; s' (0) 10E =  GPa、 e' 1E =

GPa).  In Fig. 9.7, the relaxation moduli of the laminate composites are 
plotted for the various values of the normalized film thickness ft a  in 

order to demonstrate how the film-thickness or the depth of penetration 

dictates the relaxation behavior. 

 

 

(a) 

(b) 

Figure 9.7 Relaxation moduli 
( )'E t   of the laminate composites 

with the viscoelastic substrate 
( s' (0) 10E =  GPa, e' 1E =  GPa, 

s 10τ =  s) on which the elastic film 

((a) f' 10E =  GPa; (b) f' 5E =

GPa) is coated 
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(2) Stress relaxation behavior of a viscoelastic film coated on an 
elastic substrate 
 The contact mechanics of the composite comprising a viscoelastic film 

coated on an elastic substrate is scrutinized for the stepwise penetration 

of conical indentation, in contrast to the composite with an elastic film 

coated on a viscoelastic substrate that we discussed above.  We utilize 

the viscoelastic Zener II solid as the coating film;  

   
( )f e g e

f

f g e

' ( ) ' ' ' exp

10s ' 10GPa ' 1GPa

tE t E E E

E E
τ

τ

 −= + −  
 

= = =
, 

while we suppose the perfectly elastic substrates having various values 
of the elastic modulus s'E  in order to examine the effect of substrate 

modulus on the viscoelastic behavior of laminate composite.  
  Figure 9.8(a) demonstrates the effect of elastic modulus s'E  of the 

substrate on the relaxation behavior of the laminate composite for the 
conical indentation at a fixed depth of penetration, f 1t a = . As readily 

seen in Fig. 9.8(a), the substrate-effect is predominant in the initial stage 

of stress relaxation. In order to further examine the substrate-effect, the 
relaxation modulus normalized by its initial value, i.e., '( ) '(0)E t E  is 

plotted against time in Fig. 9.8(b); the stress relaxation of the composites 

becomes progressively more sluggish along with the elastic substrate that 

becomes progressively more compliant, namely the elastic modulus of 

the substrate becomes progressively smaller. In other word, the relaxation 
time τ  of the laminate composite shifts to the longer side by decreasing 

the elastic modulus of the substrate.  It must be noticed that when the 

elastic modulus of the elastic substrate is larger than the initial modulus 
of the viscoelastic film, i.e., ( )s f 0E E> (=10 GPa), the relaxation time 

of the composite shifts to the smaller side, and vice versa. In Fig. 9.8, we 

demonstrate the substrate-effect at the fixed stepwise penetration of 

f 1t a = , although the substrate effect must be more enhanced with the 

decrease in ft a  -value, or the increase in fa t  . To confirm this 

substrate-effect in a quantitative manner, the relaxation time of the 
laminate composite is plotted against the normalized contact radius fa t  

in Fig. 9.9 for various values of the elastic modulus s'E of the substrate. 

In Fig. 9.9, the relaxation time τ  of the composite is defined as the time 
at which the normalized modulus [ ] [ ]'( ) '( ) '(0) '( )E t E E E− ∞ − ∞  

(a) 

 

(b) 

 
Figure 9.8 Effect of the elastic 

modulus s'E  of the substrate on the 
relaxation modulus ( )'E t   of the 

laminate composites. All the 

relations are for the stepwise 
penetration ( f 1t a = ) of conical 

indentation;  
(a) viscoelastic film coated on 

elastic substrate, and  

(b) the normalized moduli of the 

composites shown in (a).  
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relaxes to the value of 1 / e  .  In the region of smaller penetration 

f 1a t   , due to no substrate-effect, the relaxation time τ   of the 

composite naturally coincides with that of the viscoelastic coating film 

fτ  ( f 10τ τ= = s) itself. However, along with increasing the penetration, 

i.e., along with increasing fa t  , the relaxation time τ  progressively 

increases due to the enhanced substrate-effect. Furthermore, this 

substrate-effect is more significant for the substrate having a smaller 

value of the elastic modulus, as clearly seen in Fig. 9.8. The above 

considerations on the substrate effect thus lead to an important conclusion 

that we can control the viscoelastic behavior of the laminate composite 

by only adjusting the elastic modulus of the substrate without any 

modification of the viscoelastic coating film. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.9 Effect of the elastic 
modulus s'E  of the substrate on the 

relaxation time of the laminate 

composite. The symbols in the figure 
indicate the elastic modulus s'E  of 

the respective substrates; 
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9.3 ELASTOPLASTIC COMPOSITES  
 The elastoplastic Meyer hardness MH   of a homogeneous body is 

uniquely described in terms of the elastic modulus 'E   and the yield 

stress Y , the details of which have been well mentioned in Chap. 5. On 

the other hand for film/substrate composites, its mechanical field induced 

by indentation contact continuously changes from the field controlled by 
the coating film having the elastoplastic characteristic ( f'E 、 fY ) to that 

of the substrate ( s'E 、 sY  ) along with the progressive increase in the 

penetration depth. In other words, as depicted in Fig. 9.10, we can 

quantitatively make modeling the laminate composite as a homogeneous 

elastoplastic half-space with spatially graded mechanical characteristics 
( )f'E t a  and ( )fY t a  along the axis of indentation penetration. [9.5]  

 We introduced in Chap. 5 the additivity principle of the excluded 

volume of indentation in order to quantitatively describe the Meyer 

hardness of a homogeneous elastoplastic body (see Eq. (5.14)). 
Accordingly, by simply replacing 'E   with ( )f'E t a   and Y   with 

( )fY t a  in Eq. (5.14), we can readily extend this additivity principle to 

the elastoplastic homogeneous body having a spatially graded 

characteristics, resulting in the following analytical expression for the 
Meyer hardness ( )M fH t a : 

 ( )
( )

( ) ( ){ }
( ) ( ){ }

1

I f fM f

f I f f

' /

1 ' /

mm

m

E t a cY t aH t a
cY t a E t a cY t a

ε

ε

 
 =
 + 

  (9.16) 

  In the extreme of infinite yield stress, ( )fY t a ↑ ∞  , namely in the 

extreme of both of the coating film and the substrate exhibiting none of 

plastic yielding, the laminate composite is reduced to the perfectly elastic 

laminate that we discussed in Sec. 9.1, and then the Meyer hardness 
( )M fH t a  in Eq. (9.16) is rewritten into the following simple formula 

(notice the similarity to the elastic Meyer hardness given in Eq. (3.32));  
  ( ) ( )M f I f'H t a E t aε=  (9.17) 

where the details of indentation strain Iε  have already been given in 

Chaps. 3 and 5.  The indentation contact load P   of the present 

laminate model (i.e., a homogeneous body having spatially graded elastic 
modulus ( )f'E t a ), therefore, is readily related to its contact area A  

through the following relation;  
 ( )I f'P E t a Aε= ⋅  (9.18) 

P

E'(tf/a)

2a

h

Y(tf/a)

P

E'f, Yf

2a

h

E's, Ys

 
Figure 9.10 Mechanical equivalence 

between the elastoplastic laminate 

composite and the homogeneous 

elastoplastic body with spatially 

anisotropic mechanical characteristics 

of ( )f'E t a   and ( )fY t a   (refer to 

Figs. 9.11 and 9.12) 
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On the other hand, we defined the effective elastic modulus ( )eff f'E t a  

in Sec. 9.1 that relates the indentation load P  to the penetration depth 

h  as follows; 
 ( )eff f' n

hP k E t a h=  (9.3) 

Since Eq. (9.18) in terms of the contact area A  must be equivalent to 

Eq. (9.3) in terms of the penetration depth h  , we finally relate 
( )eff f'E t a  to ( )f'E t a  through the following relation;  

 
( ) ( )

( )

eff f f
H

2

f
H

' '

'

h

h

AE t a E t a
A

a E t a
a

 
=  
 

 
=  
 

 (9.19) 

In Eq. (9.19), ( )H hA  and ( )H ha  are, respectively, the contact area and 

the contact radius of an axisymmetric indenter pressed onto a 

homogeneous half-space at a fixed depth of penetration h  as defined in 

Sec. 9.1. Equation (9.19), therefore, means that the substrate-effect 

both on the contact area A   (or on the contact radius a  ) and on the 
elastic modulus ( )f'E t a   dictates the effective modulus ( )eff f'E t a  

in a synergetic manner. The essential discrepancies of the substrate-effect 
on ( )eff f'E t a   and on ( )f'E t a   are plotted in Fig 9.11 for conical 

indentation. As shown in Fig. 9.11(a), the substrate-effect on ( )eff f'E t a  

becomes significant when the contact radius a   exceeds f0.1t  , i.e., 

f0.1a t≥ ( f 10t a ≤ ), while it eventually becomes significant in the region 
of f0.5a t≥  ( f 2t a ≤ ) for ( )f'E t a  as demonstrated in Fig. 9.11(b). 

  In contrast to the elastic extreme that we discussed above, suppose the 
plastic extreme with infinite elastic modulus ( )f'E t a ↑ ∞   in which 

both the coating film and the substrate are subjected to fully plastic 

yielding. For such a fully plastic laminate composite, the Meyer hardness 

( )M fH t a   is given by substituting ( )f'E t a ↑ ∞   into Eq. (9.16), 

resulting in 
 ( ) ( )M f fH t a cY t a=  (9.20) 

Equation (9.20) represents the Meyer hardness of the fully plastic 

homogeneous model having spatially graded yield stress along the 

penetration axis, corresponding to Eq. (5.7) for a fully plastic 

homogeneous body we discussed in Chap. 5.   Unfortunately, however, 
we have so far no analytical theories for describing ( )fY t a   as a 

function of ft a  , not like the case of ( )f'E t a  . To circumvent this 
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Figure 9.11 Substrate-effect on (a) 
( )eff f'E t a  and on (b) ( )f'E t a  

for conical indentation.  The 

symbols indicate the numerical 

results of the finite element analysis. 

The solid lines in (a) are the 
numerical solutions ( )eff f'E t a  of 

the Fredholm integral equation (Eq. 

(9.11); refer to Fig. 9.5). The solid 

lines in (b) are the numerical solution 
of ( )f'E t a  in Eq. (9.19) combined 

with the ( )eff f'E t a -values given in 

(a). The solid lines and the symbols 

in (a) and (b) are the results for the 
modulus ratio s f' 'E E  of =10, 5, 2, 

1, 0.5, 0.2, and 0.1 from the top to the 
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difficulty, we can quantitatively/successfully describe the yield stress 
( )fY t a  by mapping the FEA-derived Meyer hardness ( )M fH t a  as 

a function of ft a   for laminate composites having various 

combinations of elastoplastic characteristics of the coating film and of the 
substrate; we first determine the Meyer hardness ( )M fH t a  by the use 

of FEA-based numerical results, and then substitute this ( )M fH t a  -

value along with the ( )f'E t a  -value into Eq. (9.16) to calculate 

( )fY t a  as a function of ft a , some of the examples thus obtained are 

shown in Fig. 9.12. 
  Once we get the detailed information on ( )f'E t a  (Fig. 9.11) and on 

( )fY t a  (Fig. 9.12) as the functions of ft a  in a numerical manner 

via FEA, we inversely predict in an analytical manner the Meyer 
hardness ( )M fH t a  of the elastoplastic laminate composite using Eq. 

(9.16). In Figs. 9.13-9.15, shown are the Meyer hardness ( )M fH t a  of 

various types of laminate composites (elastoplastic film coated on elastic 

substrate, elastoplastic film coated on ductile substrate, and ductile film 

on elastic substrate). In these figures, the symbols are the FEA-based 

numerical results, and the solid/broken lines are the analytical 

predictions via Eq. (9.16). As clearly seen in these figures, the analytical 

predictions of Eq. (9.16) faithfully realize the elastoplastic behaviors of 

laminate composites having wide varieties of their elastoplastic 

characteristics. This fact implies that we can quantitatively determine in 
experiments the elastic modulus ( fE , sE ) and the yield stress ( fY , sY ) 

from the FEM-based numerical analysis combined with the Meyer 
hardness ( )M fH t a observed on the instrumented indentation 

microscope; the details of experimental procedures will be given in Sec. 

11.3.  

 
  

 
Figure 9.13 Meyer hardness of an 

elastoplastic film coated on elastic 
substrates ( s2 100E≤ ≤ GPa). The 

symbols are the results of FEA, and 

the solid/broken lines are the 

analytical predictions (Eq. (9.16)) 
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Figure 9.14 Meyer hardness of an elastoplastic film 

coated on ductile substrates. The symbols are the 

results of FEA, and the solid/broken lines are the 

analytical predictions (Eq. (9.16)) 
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Figure 9.15 Meyer hardness of an elastoplastic film 

coated on a ductile substrate, and a ductile film on 

an elastoplastic substrate. The symbols are the 

results of FEA, and the solid lines are the analytical 

predictions (Eq. (9.16)) 
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NUMERICAL INDENTATION 
 CONTACT MECHANICS 

 
 None of analytical theories have been established for the indentation 

contact mechanics except the elastic contact due to the extremely 

complicated mechanical processes induced beneath the tip of indenter, as 

repeatedly emphasized in the preceding chapters.  When we overview 

the long history of the indentation contact mechanics since the end of the 

18th century, we readily notice that we will not be able to overcome these 

difficulties within the present century.  On the other hand, in order to 

numerically solve the problems of deformation and fracture of 

mechanically complicated structures, the Finite Element Method (FEM) 

has been proposed over the period 1950-1962 by the pioneers of The 

Boeing Co. Ltd and The University of Washington. The prominent 

development of electronics-based computer science and engineering 

since the mid-20th century along with the mathematical contributions of 

numerical analyses has enhanced and boosted the application of FEM to 

the numerical analyses for solving the problems of structural engineering. 

The FEM, therefore, has long been provided powerful tools to the specific 

engineering fields of the contact mechanics, nonlinear fracture mechanics, 

and the hydrodynamic science/engineering, etc., in which we cannot 

analytically solve their problems [10.1]. Currently available commercial 

FEM software packages include (1) NASTRAN developed in 1968 by 

NASA (United States National Aeronautics and Space Administration), 

(2) ABAQUS that has been intensively applied to the field of numerical 

indentation contact mechanics since 1980s, and (3) ANSYS that has been 

designed and developed for the users of interactive personal computer 

(PC) through Graphical User Interface (GUI). In this chapter, based on 

the Finite Element Analysis (FEA), we will extensively discuss the 

reliability and the usefulness of the numerical indentation contact 

mechanics applied to the axisymmetric indentation contacts problems 

(spherical and conical indentation).   

 

 
 
 

[10.1] O.C. Zienkiewicz and R.L. Taylor, and 
J.Z. Zhu, The finite element method: its basis and 
fundamentals, Seventh Ed., Elsevier, 2013; 
David V. Hutton, Fundamentals of finite element 
analysis, McGraw-Hill, 2004; J.N. Reddy, An 
introduction to the finite element method, third 
Ed., McGraw-Hill, 2006. 
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10.1 OUTLINE OF FINITE ELEMENT ANALYSIS 
 IN INDENTATION CONTACT MECHANICS 

  In this section, we will focus on the FEM applied to the indentation 

contact mechanics (the mathematical theory, concept of finite elements, 

modeling the mechanical structures, boundary and initial conditions, etc. 

of FEM are published in the literatures [10.1]). Most of the commercially 

available FEM-packages equip an interactive user interface, through 

which we readily make modeling the geometry of the solid structures we 

are interested in, defining the element type and the material 

characteristics/boundary conditions, meshing to create the finite element 

model, solving the problems, and then plotting/viewing the solution.  

  An example of the axisymmetric finite element model is demonstrated 

in Fig. 10.1 of a spherical indentation on an infinite half-space. We need 

to make finer meshing beneath the contact area that is requisite for 

improving the reliability/accuracy of the numerical solution due to the 

very steep spatial gradient of stresses/strains. Figure 10.2 shows an 

example of FEA for the surface-profile (sink-in profile) and the 

distribution of indentation-induced in-surface displacements along the 

axis of penetration at 3h = μm (Vickers/ Berkovich-equivalent cone) for 

a perfectly elastic body. As clearly seen in Fig. 10.2, one of the 

advantages of FEA is the visualization of in-surface mechanical 

information (stress-strain details) that is very essential for us to get the 

intuitive as well as deep insight into the physics of indentation contact 

(some FEA-based numerical results have already been given in Figs. 4.4, 

5.3, 5.5, 5.7, 5.11, 8.4-8.9, and 9.11-9.15).  

 

10.2 ELASTIC ANALYSIS 
 As well described in Chap. 3, there exist the analytical solutions in a 

closed form for the axisymmetric indentation contact onto a 

homogeneous elastic half-space. We will scrutinize in this section the 

reliability and the accuracy of the numerical FEA-results for the 

spherical/conical indentation contact by comparing them with the 

analytical solutions. Furthermore, we will make the FEA-based 

numerical approach to the Poisson’s effect on the indentation contact 

behavior since the analytical theories have been implicitly based on an 

assumption of incompressible elastic body, i.e. 0.5ν = .  

 
Figure 10.2 The surface-profile and 

the in-surface distribution of 

deformation at the penetration depth 

3h =  μm for the Vickers/Berkovich 

equivalent cone pressed onto a 

perfectly elastic body 

 
Figure 10.1 An example of the 

axisymmetric finite element model 

for a spherical indenter pressed onto 

a homogeneous half-space 
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  As discussed in Chap. 3, the indentation contact load P  is related to 
the induced penetration depth h  through the following relation;   

 3 24 '
3

P E Rh=  (3.18) 

for spherical indentation (the Hertzian theory), and  

 22cot 'P E hβ
π

=  (3.25) 

for conical indentation (the Sneddon’s theory). These analytical formulae 

implicitly assume the Poisson’s ratio of 0.5ν = , though the Poisson’s 

ratio of most of engineering materials is 0.3ν ≈  , suggesting the 

difficulty in applying the above analytical formulae to the indentation 

contact behavior of engineering materials. Equations (3.18) and (3.25) 

are described in terms of the plane-strain elastic modulus 'E

( 21E= − ν  ) that includes the Poisson’s ratio, suggesting that the 

theoretical framework of the above equations seems to include the 

Poisson’s effect.  However, it must be noticed the fact that these theories 

make a priori assumption of incompressible elastic body. On the other 
hand, we can introduce any value of the Poisson’s ratio ν  to the FEA-

based model material, leading to the resultant numerical solution that is 

applicable to any of engineering materials.  The FEA-results with the 

Poisson’s effect on the P  - h   loading relations (the plots with the 

symbols of ○ and ●) are shown in Figs. 10.3 and 10.4, where the solid 

lines and the broken lines indicate the analytical results with 'E  
( 21E= − ν ) for 0.5ν =  and 0.3ν = . As clearly seen in these figures, 

the analytical solutions for 0.5ν =   (the solid lines) well realize the 

FEA-numerical results, while the analytical solutions for 0.3ν =  (the 

broken lines) always underestimate the FEA-numerical results due to the 

a priori assumption of the incompressible elastic body included in the 

Hertz/Sneddon theories. 
  The profile of the free-surface outside the contact region ( r a> ) of a 

perfectly elastic body is described by 

    
( )

( )

2
2 1 2

2 1 2
2

1( ,0) 2 sin 1

12 sin 1 ; 1

z
au

R

h

ρ ρ ρ
π ρ

ρ ρ ρ
πρ ρ

−

−

 = − + − 
 

 = − + − ≥ 
 

 (3.20) 

that is indented by a sphere with the radius R , and 

Figure 10.4 The P  - h  loading 

curves of conical indentation (the 

inclined face-angle o19.7β = ). The 

solid line ( 0.5ν =  ) and the broken 

line ( 0.3ν = ) indicate the Sneddon’s 

analytical solutions. The symbols ○ 

( 0.5ν = ) and ● ( 0.3ν = ) are the 

FEM-numerical results 
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Figure 10.3 The P  - h   loading 

curves of spherical indentation (the 
tip-radius 10R = μm). The solid line 

( 0.5ν =  ) and the broken line 

( 0.3ν =  ) indicate the Hertzian 

analytical solutions. The symbols ○ 
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FEM-numerical results  
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 
 (3.27) 

for conical indentation (refer to Chap.3). The comparison of these 

analytical solutions with the FEA-based numerical results ( 0.5ν = ) is 

shown in Fig. 10.5; the excellent agreement between the analytical and 

the numerical results ensures the accuracy/reliability of the FEA.  

 
10.3 ELASTOPLASTIC ANALYSIS 
(1) P - h  Hysteresis Curve 

 As emphasized in Chap.5, we have no analytical solutions for the 

elastoplastic indentation contact mechanics, excepting the unified theory 

based on the additivity principle of excluded volume of indentation (see 

Sec. 5.1(2)).  The FEM-based numerical analysis, therefore, exclusively 

plays an essential role in the elastoplastic indentation contact mechanics. 

  Due to the irreversible plastic flow, we observe a hysteresis in the 

indentation loading-unloading P - h  curve (see Figs. 5.5, 5.8 - 5.10, and 

5.12). This fact implies that the observed P  - h   hysteresis curve 

combined with FEA makes it possible for us to quantitatively determine 

the elastoplastic characteristics, i.e., the elastic modulus 'E   and the 

yield stress Y   of the material tested.  Figure 10.6 depicts the 

loading/unloading P - 2h  linear plot along with the contact geometries 
of an elastoplastic half-space for pyramid/cone indentation. As 
emphasized in the following considerations, the contact depth ch   is 

essential for calculating the contact area A , and the residual depth rh  

plays an important role in determining the plastic flow; both are the  key 

parameters for determining the elastoplastic characteristics. The 

geometrical similarity of the pyramid indenter (Vickers/Berkovich 

indenter) leads to the penetration-depth-independent indentation strain 

Iε (= tan 2β ), depending only on the inclined face-angle β  (refer to 

Chaps. 3 and 5, and Tab. 3.1). This fact of penetration-depth- independent 

strain is very essential for quantitatively determining the elastoplastic 

characteristics through P - h  hysteresis curve. The linear plots both for 

the loading and the unloading 2P h−   relations shown in Fig. 5.5 for 
the wide range of plastic index ( 0.05 20PI≤ ≤  ) are actually resulted 
from the penetration-depth-independent Iε . In Fig. 10.6, we define the 

contact depth ch  at the applied load P  as well as the depth rh  and the 
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Figure 10.6 Loading/unloading
2P h−  linear plot and the pyramid/ 

cone indentation contact geometries 

of an elastoplastic body 

 
Figure 10.5 The elastic contact 

profiles ( 0.5ν = ) of the free-surface 

outside the contact zone of spherical 

or conical indentation contact: the 

symbols (●, ○）are the FEA-based 

numerical results and the 

solid/broken lines are the analytical 

solutions (Eqs. (3.20) and (3.27)) 

(refer to Fig. 3.6)  
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inclined face-angle rβ  of residual impression after unload. Since there 

exist the linear P - 2h  relations both in loading/unloading processes for 
pyramid/cone indentation, we can describe the loading/unloading process 
in terms of the loading coefficient 1k  and the unloading coefficient 2k ; 

 2
1P k h=  (10.1) 

 2 2
2 r( )P k h h= −  (10.2) 

Furthermore, due to the fact that the loading line crosses the unloading 
line at the maximum penetration depth h  , there is the interrelation 
between 1k  and 2k ; 

 ( )2
1 2 r1k k ξ= −  (10.3) 

in which rξ  is the normalized residual depth rh h .  Accordingly, the 

loading coefficient 1k  is related to the unloading coefficient 2k  via rξ . 

On the other hand, as given in the following considerations, both the 
loading coefficient 1k   and the normalized residual depth rξ   are 

intimately related to the plastic index PI, while the unloading coefficient 

2k   is closely related to the elastic modulus 'E  . The FEA-based 

numerical results of the normalized elastoplastic characteristics, 1k Y , 

2 'k E , and rh h  are, respectively, plotted against the plastic index PI 

(= I 'E cYε ) in Figs. 10.7 – 10.9. These figures show that the normalized 

parameters of 1k Y , 2 'k E , and rh h  are quantitatively related in a 
unique manner to the plastic index ( )'IPI E cYε=  in the wide ranges 

of 0.5 GPa 'E≤ ≤ 500 GPa and 0.5 GPa Y≤ ≤ 100 GPa.  The preceding 

considerations imply that we can quantitatively determine the elastic 

modulus 'E  and the yield stress Y  through Figs. 10.7 – 10.9  after 
we determine in experiment the loading coefficient 1k  , unloading 

coefficient 2k , and/or the residual depth of impression rh  by the use of 

the conventional instrumented indentation apparatus; the detailed 

experimental procedures are given as follows;  

 

Figure 10.8 Normalized unloading 
coefficient 2 'k E   vs. plastic index 

PI (FEA-based numerical results for 

the Vickers/Berkovich equivalent 

cone) 
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Figure 10.9 Normalized residual 
depth ( )r rh h ξ≡   vs. plastic index 

PI (FEA-based numerical results for 

the Vickers/Berkovich equivalent 

cone) 
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Figure 10.7 Normalized loading 
coefficient 1k Y   vs. plastic index 

PI (FEA-based numerical results for 

the Vickers/Berkovich equivalent 

cone) 
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Among these elastoplastic parameters, the most essential one is the 
contact depth ch  at the indentation load P  (see Fig. 10.6), though it 

cannot be determined in experiment on the conventional instrumented 

indentation apparatus. On the other hand, as shown in Fig. 5.6 in Chap. 

5, using the FEA-based numerical results, the normalized contact depth 

ch h  is intimately related to the plastic index I 'E cYε .  As a matter 

of fat, combining Fig. 5.6 and Fig. 10.9 results in Fig. 10.10. By the use 
of Fig. 10.10, therefore, we can readily estimate the contact depth ch  

from the experimentally observable residual depth rh  . Once we 

determine the contact depth ch , we can successfully calculate the contact 

radius ca , and then the contact area A  that is requisite for determining 

the elastoplastic characteristics, the details of which have already been 

given in Chaps. 3 and 5.   

 
Figure 10.10 Correlation between the 
normalized contact depth ch h   and 

the normalized residual depth rh h  . 

The broken lines are, respectively, the 

Oliver-Pharr (conical indenter) and 

the Field-Swain (spherical indenter) 

approximations. The symbols (●, ▲) 

indicate the FEA-based numerical 

results 
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(i) Apply the experimentally observed rh h -value to the ordinate of 

Fig. 10.9 to estimate the plastic index ( )'IPI E cYε=  from the 

corresponding abscissa, followed by the application of this PI-

value to the abscissa of Fig. 10.7 in order to determine the 1k Y -

value from the corresponding ordinate. This 1k Y  -value 

combined with the experimentally observed loading coefficient 1k  

and the PI-value are then utilized to determine the elastoplastic 

characteristics of  the elastic modulus 'E   and  the yield stress 

Y , or 

(ii) Assume the initial value 0Y  of the yield stress, and then calculate 

1 0k Y  using the experimentally observed 1k . Apply this 1 0k Y -

value to the ordinate of Fig. 10.7 to estimate the corresponding 

plastic index  I 0'E cYε  from the abscissa, leading to the initial 

estimate of the elastic modulus 0 'E . Substitute these initial values 

of 0Y  and 0 'E  into the abscissa (the plastic index) of Fig. 10.8 

to make the first-order approximation of the elastic modulus 1E  

from the ordinate combined with the experimentally observed 2k

-value. And then apply the I 1 0'E cYε -value to the abscissa of Fig. 

10.7 for determining the first-order approximation of the yield 

stress 1Y   from the ordinate. Repeat these procedures until the 

convergences of nE  and nY  are obtained, finally resulting in the 

elastoplastic characteristics of 'E  and Y . 
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  The considerations on the conical indentation in Fig. 10.10, by way of 
example, make clear that (1) the normalized contact depth ch h  

converges to the Sneddon’s solution of 2 π   in the perfectly elastic 

extreme of r 0h h →  , (2) the normalized contact depth ch h  

monotonically increases with the increase in the residual depth rh h  

due to the enhanced plastic flow-out to the free-surface outside the 

contact zone, implying the depression of the sink-in profile of the surface, 
(3) none of sink-in nor pile-up of the free-surface, i.e., c 1h h =  , is 

observed at r 0.85h h ≈ , (4) a significant pile-up of the free-surface is 

induced in the perfectly plastic extreme of r 1h h →  , resulting in the 

increase of the contact depth up to c 1.1h h ≈  . The FEA-visualized 

contact profiles of the free-surface have already been given in Figs. 5.6 
and 5.7 in relation to the plastic index ( )I 'PI E cYε= . Figure 10.10 also 

suggests that the elastoplastic contact behavior of spherical indentation is 
similar to that of conical indentation; the normalized contact depth ch h  

converges to the Hertzian value of 1/2 in the elastic extreme of r 0h h → , 

and goes up to about 1.4 in the plastic extreme of r 1h h → . 

 

(2) The Oliver-Pharr/Field-Swain Approximation [10.2-10.4]  
 In the preceding section, using the FEA-based numerical results, we 
correlate the normalized residual depth rh h  to the normalized contact 

depth ch h  in a quantitative manner. In this section, we will discuss the 

Oliver-Pharr approximation for conical indentation and the Field-Swain 

approximation for spherical indentation; both of the approximations 

stand on the same elastic assumption prior to analytically corelating 

rh h  to ch h . In elastoplastic indentation contact, however, this elastic 

assumption is very critical in estimating the contact penetration depth ch , 

and then for determining the elastoplastic characteristics in the 

conventional instrumented indentation apparatus. There exist the 

following geometrical relations in the elastoplastic indentation contact 

(see the details in Fig. 10.6); 
 s c r eh h h h h= + = +  (10.4) 

The Oliver-Pharr/Field-Swain approximation assumes that the sink-in 
depth sh  and the depth of elastic recovery eh  of the elastoplastic body 

with the elastic modulus 'E  are the same as those of the perfectly elastic 

body with the same elastic modulus 'E   when both of the bodies are 

[10.2] W.C. Oliver, G.M. Pharr, J. Mater. Res., 
     7, 1567 (1992) 
[10.3] J.S. Field, M.V. Swain, J. Mater. Res., 8,  
     297 (1993) 
[10.4] M. Sakai, “Principle and Application of 
     Indentation”, in Micro and Nano 
    Mechanical Testing of Materials and 
    Devices, Edited by F. Yang, J.C.M. Li, 
    1-47, Springer (2008) 
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indented at the same load of P  .  The elastic indentation contact 

mechanics (refer to Eqs. (3.21) and (3.28)) leads to the following 
relations between eh  and sh ; 

 s

e

1
2

h
h

=  (spherical indentation) (10.5) 

 s

e

21h
h π

= −  (conical indentation) (10.6) 

Substituting these elastic relations into the elastoplastic relations of Eq. 
(10.4), we finally have the following approximations that relate rh h  to 

ch h ; 

 Field-Swain approximation: 

         c r1 1
2

h h
h h

 = + 
 

 (spherical indentation) (10.7) 

 Oliver-Pharr approximation: 

         c r2 1 1
2

h h
h h

π
π
  = − −    

 (conical indentation) (10.8) 

The broken lines in Fig. 10.10 represent the Oliver-Pharr/Field-Swain 

approximations. Since both of Eqs. (10.7) and (10.8) assume the elastic 

relations of Eqs. (10.5) and (10.6), these approximations converge to 

c 1h h →   in the plastic extreme of r 1h h →  , being impossible to 

describe the plastic-flow-induced surface pile-up ( c 1.0h h > ), as well 

recognized in Fig. 10.10.  

 

(3) Strain Hardening and the Representative Stress/Strain 

 The discussions in Chap.5 and the preceding considerations have only 

been applicable to elastic-perfectly-plastic solids having a constant yield 

stress Y  in the region exceeding the elastic limit at which the plasticity 

index ( )I 'PI E cYε≡   is about 0.2. However, in most of engineering 

materials, such as mild steel, aluminum, copper, etc., ever-increasing 

actual stress is required for continued deformation beyond the yield point, 

i.e., strain hardening (work hardening), as shown in Fig. 10.11. The 

experimental results of D. Tabor as well as the FEA-based numerical 

studies have shown that the conclusions obtained in the indentation 

contact mechanics of non-hardening elastoplastic solids may be applied 

Uniaxial strain,
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Figure 10.11  

Stress σ   vs. strain ε   curve (S-S 

curve) of elastoplastic material. The 

S-S curve of strain hardening 

material increases with strain 

exceeding the elastic limit. The 

representative flow stress RY   is 

defined as the value at the 

representative plastic strain ( )εp R
 

or at the representative total strain 

εR  
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with a good approximation to strain hardening solids if Y  is simply 

replaced with the representative flow stress RY . This fact indicates that 

the preceding elastoplastic analyses in terms of PI  that we made, by 

way of examples, in Figs. 10.7–10.9 still survive by simply replacing PI  

with  ( ) ( )I RR 'PI E cYε=   [4.1, 10.5, 10.6]. The representative flow 

stress RY  is defined by the representative plastic strain ( )p R
ε  or the 

representative total strain Rε   as sown in Fig. 10.11. The FEM-based 

numerical result, on the other hand, indicates that ( )p R
ε  is related to 

the indentation strain Iε  as follows [10.6];  

 ( )p IR
0.44ε ε=  (10.9) 

Accordingly, substituting the indentation strain Iε  (see Eqs. (3.30) and 

(3.31)) into Eq. (10.9), the representative plastic strain of conical indenter 
with the inclined face-angel β  is written by  

 ( )p R
0.22 tanε β= , (10.10) 

and of spherical indenter with the radius R  is given by  

 ( )p R
0.19 a

R
ε = , (10.11) 

We can, therefore, readily determine the respective flow stresses RY  in 

Fig. 10.11 by the use of these ( )p R
ε -values. 

 

(4) The Effects of Indenter’s Tip Geometry  
           and of Contact Friction on the Constraint Factor c  

 The role of contact friction at the interface between the indenter and 

the material tested is not well understood even for the perfectly elastic 

contact mechanics. Furthermore, the indenter-tip geometry and the 

contact friction will have a significant effect on the sink-in/pile-up of an 

elastoplastic body (see Figs. 5.6 and 5.7), as well as on the constraint 
factor c   (refer to Chap. 5 and Eq. (5.7)), since the constraint factor 

dictates the in-surface plastic flow out to the free surface outside the 

contact region. The contact friction may resist this plastic flow-out along 
the indenter’s face, leading to a larger c -value. Furthermore, when the 

inclined face-angle of conical/pyramidal indenter becomes larger, i.e., the 

tip of indenter becomes sharper, it will be expected that the plastic flow 

[10.5] D. Tabor, “Hardness of Metals”,  
Clarendon (1951) 

[10.6] M. Sakai, T. Akatsu, S. Numata,  
     K. Matsuda, J. Mater. Res., 18[9], 
     2087 (2003) 
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out to the free surface will be enhanced, leading to progressively smaller 
c -value.  

  As discussed in Chap.5, the experimental results indicate that the 
constraint factor of ductile metals falls in the range of 2.5 3.5c≤ ≤  

depending on the contact friction and the indenter’s geometry. On the 

other hand, the FEM-based numerical analyses enable us to determine in 

a quantitative manner the constraint factor of an arbitrary tip-geometry of 

indenter in a wide range of its contact friction.  
The FEA-based numerical results of the constraint factor c   are 

plotted against the contact friction μ   in Fig. 10.12 (for Vickers/ 

Berkovich-equivalent cone), and against the inclined face angle β  (for 

conical indenters) in Fig. 10.13. The constraint factor of the equivalent 
cone significantly increases from the initial value of 2.65c ≈   to the 
plateau of 3.2c ≈  with the increase in the contact friction ( 0 0.5μ≤ ≤ ), 

as shown in Fig. 10.12.  Since the contact friction of most of engineering 
materials against diamond falls in the range of 0.1 0.5μ≤ ≤ , the FEA-

based preceding conclusions quite well satisfy the experimentally 
observed c  -values of 3.0 3.2c≤ ≤   for Vickers diamond indentation 

([10.5], [10.6]).  As well seen in Fig. 10.13, the constraint factor c  
decreases with the increase in the inclined face-angle β  . This fact 

implies the enhanced in-surface plastic flow out to the free surface when 
the conical indenter becomes sharper, i.e., the inclined face-angle β  

becomes larger.  

 

10.4 VISCOELASTIC ANALYSIS 
 In contrast to the preceding elastoplastic analysis, we can readily 

extend the elastic contact mechanics to the viscoelastic contact 

mechanics by the use of “the elastic-to-viscoelastic corresponding 

principle” (refer to Chaps. 6 and 7). However, the time-dependent 

Poisson’s effect (see Figs. 6.7 - 6.10) associated with indentation contact 

makes the analysis rather difficult. As a matter of fact, when we indent a 

Vickers/Berkovich equivalent cone onto a viscoelastic body in a stepwise 
manner to a constant penetration depth of 0h , due to the increase in the 

Poisson’s ratio associated with stress relaxation, we observe the 

progressively increasing contact area induced by creeping-up of the free-

surface along the face of indenter. An example of the FEA-based 

 

Figure 10.13 Effect of the inclined 

face-angle of conical indentation on 

the constraint factor (FEA-based 

numerical results; the contact 
frictions of 0.0μ =  and 0.2μ = ) 
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numerical result is shown in Fig. 10.14 for the creeping-up of indentation 

contact area under a stepwise penetration onto a Maxwell liquid (the 
relaxation shear modulus ( )g( ) expG t G t= − τ  with the glassy modulus 

g 36.4G = GPa, relaxation time 200τ = s, and the glassy Poisson’s ratio

0.1gν =  ). This result indicates that we cannot determine the stress 

relaxation modulus relax' ( )E t   from the observed load relaxation ( )P t  
using Eq. (7.6) because of the time-dependent contact area ( )A t . We, 

therefore, need to use the following integral equation  

 relax
0

tan ( ')( ) ' ( ') '
2 '

t dA tP t E t t dt
dt

β= −


 (7.3) 

in order to determine the relaxation modulus relax' ( )E t  . We have to, 

therefore, measure in experiment the time-dependent contact area ( )A t  

along with the indentation load relaxation ( )P t , though it is impossible 

for us to measure the time-dependent contact area ( )A t   in the 

conventional instrumented indentation apparatus (the details will be 

given in Sec. 11.3 of the instrumented indentation microscope that 

enables to measure ( )A t   as a function of time). In the FEM-based 

numerical analyses, on the other hand, it is easy for us to numerically 

determine the plane-strain relaxation modulus relax' ( )E t  , since we can 

easily determine the time-dependent contact area ( )A t  in a quantitative 

manner.  
Comparison between the FEA-based numerical result and the 

analytical solution of a viscoelastic liquid having a time-dependent 

Poisson’s effect with shingle relaxation time (Eq. (6.26));   

g 3.85G = GPa, e 0G = GPa, 0 200τ = s, and g 0.3ν = ,  

is shown in Fig. 10.15, where the relaxation modulus relax' ( )E t  obtained 

by substituting the FEA-derived ( )P t   and ( )A t   into Eq. (7.3) is 

plotted along with the analytical solution (Eq. (6.29)), demonstrating that 

the FEA-based numerical result faithfully realizes the analytical solution. 

This excellent agreement between the analytical solution and the FEA-

based numerical result indicates the usefulness of the FEA–based 

numerical indentation contact mechanics in the studies of engineering 

materials having rather complicated mechanical characteristics such as 

the viscoelastic laminate composite discussed in the following section. 

 
Figure 10.15 Relaxation modulus of a 

viscoelastic liquid; the numerical result 

(○) via Eq. (7.3) with FEA-derived 

( )P t - ( )A t  relation, and the analytical 

solution (Eq. (6.29); the solid line) 
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Figure 10.14 Load relaxation and 

contact-area creep under a stepwise 

penetration of a conical indenter 

(FEA-based numerical results of a 
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10.5 APPLICATION TO LAMINATE COMPOSITES 
  As mentioned in Secs. 9.1 and 9.2, 

there exist the analytical solutions for 

the indentation contact mechanics of 

coating/substrate composites in elastic 

as well as viscoelastic regimes, though 

we inevitably face the extremely 

complicated mathematical procedures 

such as solving the Fredholm integral 

equation (Eq. (9.11)) and/or integrating 

the Boussinesq Green function (Eqs. 

(9.7) and (9.8)).  Even in these 

analytical approaches, however, we 

cannot control the mechanical consistency at the interface between the 

coating film and the substrate. To circumvent this difficulty, the FEA-

based numerical indentation contact mechanics plays an essential role; 

we can take into account the mechanical consistency at the interface in a 

quantitative manner, as well as deal with the indentation contact 

mechanics of multi-laminar composites.  

  As an example, let us make the FEA-based numerical analysis of a 

trilaminar composite depicted in Fig. 10.16; an elastoplastic coating film 
( f 100E =  GPa, f 10Y =  GPa, f 0.3ν =  ) with the thickness of 5 μm is 

bonded to an elastic substrate ( s 100E =  GPa, s 0.3ν =  ) through an 

interfacial viscoelastic bonding layer (Maxwell liquid; 
( ) ( )relax expgE t E t τ= −  , gE  =10GPa, τ  =200s)  having the thickness 

of 1 μm.  In order to scrutinize the role of this viscoelastic interface in 
the indentation contact behavior, the bilaminar composite without 

viscoelastic bonding layer is also examined for comparison (see Fig. 

10.16).  
  Figure 10.17 shows the FEA-based numerical results of the load ( )P t  

plotted against time t  for the bilaminar and the trilaminar composites 

indented by a Vickers-equivalent cone under a constant-rate of 

penetration to the depth of 3.0h = μm in 400s, and then the depth is kept 
to 1000t =  s (see the top view of Fig. 10.17).  The indentation load 

relaxation is observed for the trilaminar composite due to the presence of 

elastoplastic film

elastic substrate

Bilaminar composite Trilaminar composite

viscoelastic
    bonding layer

elastoplastic film 5μm

1μm

elastic substrate

Figure 10.16 Bilaminar and trilaminar composites used in the FEA  

Figure 10.17 Time-dependent loads 

for the bilaminar and the trilaminar 

composites indented by a Vickers- 

equivalent cone under a constant-rate 

of penetration to the depth of  

3.0h =  μm in 400s, and then the 

depth is kept to 1000t =  s (FEA-

based numerical results) 
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viscoelastic interface. It must be noticed the fact that this load relaxation 

is very sluggish while the relaxation time of the viscoelastic interface is 
τ  =200s, being resulted from the geometrical constraints of the time-

independent elastoplastic coating film as well as of the elastic substrate.  

  In Sec. 9.2, we emphasized in the indentation contact mechanics of 

bilaminar composites that we can control and design the viscoelastic 

behavior of the laminate composite by only adjusting the elastic modulus 

of the elastic substrate without any modification of the viscoelastic 

coating film (refer to Fig. 9.9). We can also control the viscoelastic 

behavior of the trilaminar composites by only adjusting the elastic 

modulus of the substrate. In Fig. 10.18 plotted are the FEA-based 

numerical results of the trilaminar composites shown in Fig. 10.16 with 
the substrate having its elastic modulus ranging s10GPa 500GPaE≤ ≤ . 
In Fig. 10.18, the normalized load relaxation ( ) ( )400P t P  is plotted 

against the time ( 400s)t ≥ , where the penetration depth is kept constant 

at 3.0h = μm (see the top view of Fig. 10.17).  As shown in Fig. 10.18, 

the load relaxation becomes progressively significant, i.e., the relaxation 

time of the laminate shifts to the shorter side, with the increase in the 
elastic modulus sE  of the substrate.   

Figure 10.18 Effect of the elastic 
modulus sE  of the substrate on the 

relaxation behavior of the trilaminar 

composite with a viscoelastic 

bonding layer (the right-hand view in 

Fig 10.16). A Vickers-equivalent 

cone under a constant-rate of 
penetration to the depth of 3.0h =

μm in 400s, and then the depth is kept 
constant to 1000t =  s (see the top 

view of Fig. 10.17).   
The normalized load relaxation 
( ) ( )400P t P  is plotted against the 

time ( 400s)t ≥  

(FEA-based numerical results) 
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EXPERIMENTAL APPARATUS AND 
             DATA ANALYSIS 
 
11.1 TIP-GEOMETRY OF  
         THE CONVENTIONAL INDENTERS 
  Figure 11.1 depicts the tip-geometries of the conventional Vickers and 

the Berkovich indenters. In order to add the geometrical consistency to 

the Brinell hardness test, the inclined face-angle β   of the Vickers 

tetrahedral pyramid is 22.0 , and thus the apex angle, i.e., the diagonal 

face-to-face angle 2θ  is designed to be 136 , since this is the angle 

subtended by the tangent of a Brinell sphere when the ratio of the contact 

diameter 2a  to the diameter 2R  of Brinell sphere is 0.375, being the 

most recommended ratio in the Brinell hardness test (refer to Fig. 5.4 in 

Chap. 5). The diagonal edge-to-edge angle 2ψ  is, therefore, 148.1 . On 

the other hand, the tip-geometry of the Berkovich trihedral pyramid 

indenter is designed in order that its excluded volume of the material 

beneath the indenter at a penetration depth of h  is the same as that of 

the Vickers pyramid, resulting in 24.7= β   and 77.1= ψ  . The 

projected contact area A   of cone/pyramid indenter is, due to its 

geometrical similarity, described by 2A gh=   using the index of 

projected area g   ( 24cotg = β   for the Vickers indenter, and 
23 3 cotg = β  for the Berkovich indenter). Accordingly, the g -value 

of the Vickers coincides with that of the Berkovich, resulting in 24.5g = , 

and then giving the same projected contact area 2A gh= , as well as the 

same excluded volume of ( )3 33 8.17V gh h≡ =  at a given penetration 

depth h . 
 Upon machining a pyramidal tip on a tiny diamond single crystal, it is 

impossible to make an ideally sharp-tip, i.e., an atomic tip, always 

resulting in a rounded or a truncated tip. Due to the trihedral tip-geometry, 

machining a sharp tip on the Berkovich indenter is rather easier than the 

tetrahedral Vickers indenter. This is the reason why the Berkovich 

indenter is rather preferable than the Vickers indenter in nanoindentation 

testing. Commercially available Berkovich indenter, in general, has the 

(a) Vickers tetrahedral indenter

(b) Berkovich trihedral indenter

β ψ 2θ
Vickers 22.0° 74.05° 136.0°

β ψ
Berkovich 24.7° 77.1°

β

2ψ

h

2a

2θ

β
ψ h

a

Figure 11.1 Tip-geometries of the 

conventional pyramid indenters:  

(a) Vickers indenter,  

(b) Berkovich indenter 
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rounded tip-radius of about 100 nm. This rounded tip may yield crucial 

difficulties in nanoindentation testing when the penetration depth is 

several tenth of nanometers or less.  The effect of a rounded tip on the 

indentation contact behavior will be discussed in what follows for the 

Vickers/Berkovich equivalent conical indenter ( 19.7= β ) via the FEA-

based numerical results.  

  The tip-geometry of Vickers/Berkovich equivalent cone with a 

rounded tip (radius of curvature, tR ) is shown in Fig. 11.2. Suppose the 

apex radius of t 100R = nm, by way of example, then the lost-tip-depth 

is to be ( )t t (sin tan cos 1) 6.22h R β β βΔ = + − = nm, the spherical depth 

is ( )sphere t (1 cos ) 5.85h R β= − = nm, and the region of conical depth is 

given by cone 5.85h ≥ nm.  Once we press this indenter onto a flat half-

space, we will observe the spherical contact response in the initial stage 

of penetration followed by the conical indentation contact.  
 Figure 11.3 shows the FEA-based numerical result of the P - h  plot 

for this rounded-tip cone indented on a perfectly elastic body with the 

elastic modulus 100E =  GPa and the Poisson’s ratio 0.5ν =  . As 

clearly seen in Fig. 11.3, it must be noticed in the region of 150h ≤ nm 

that there exists a finite deviation from the conical indentation in its P -

h    relation.  This numerical study suggests that we have to pay an 

attention in nanoindentation tests upon using the conventional 

Vickers/Berkovich pyramid. In other word, we have to make an 

experimental examination/correction of the tip-radius in a quantitative 

manner prior to nanoindentation testing.  However, on the conventional 

instrumented indentation apparatuses unlike the indentation microscope 

(refer to the subsequent Sec. 11.3 for the details), we can neither measure 
the contact depth ch  nor determine the contact area cA  in experiment; 

it is only possible for us to determine the indentation load P  and the 

associated penetration depth h .  This fact implies that, even after we 

completed the quantitative correction for the tip-radius, we have to make 
approximations/assumptions to estimate ch   and/or cA  , before we 

experimentally determine the material characteristics such as the elastic 

modulus and the yield stress of the material tested. 

 

Figure 11.3 P  - h    plot of a 

perfectly elastic body (elastic 

modulus 100E =  GPa, Poisson’s 

ratio 0.5ν =  ) indented by a 

Vickers/Berkovich equivalent cone 
with a rounded tip (radius; t 100R =

nm). The broken lines indicate the 

analytical relations, and the symbol 

(○) are the FEA-based numerical 

results 
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11.2 INSTRUMENTED INDENTATION TEST SYSTEM 

  The studies on instrumented indentation testing have been started in 

1980s in order to make a quantitative measurement/determination of the 

material characteristics in micro/nano region [11.1-11.3].  The 

schematic of instrumented micro/nano indentation test system is given in 

Fig. 11.4. A piezo or an electromagnetic actuator is widely utilized as the 

load/displacement driving unit. Load sensor with the precision of about 

±0.5μN and displacement sensor with the precision of ±0.1nm are 

commercially available. As shown in Fig. 11.4, depending on the spatial 

configuration between the displacement sensor and the test specimen, the 

test system is grouped into (a) the apparatus-frame-referenced and (b) the 

specimen-holder-referenced test systems [9.4, 11.4-11.6]. In the former 

test system (a), since the displacement sensor can be fixed away from the 

specimen tested, we can easily make indentation testing at elevated 

temperatures, in a hostile environment, etc. by setting a specimen 

chamber, while the elastic deformations of the frame, load-train, and of 

the specimen-holder are inevitably included as the frame compliance in 

the penetration depth observed, leading to the fatal defect of this test 

system. The frame-compliance-associated problem becomes more 

significant in micro/nano indentation testing.  Accordingly, we have to 

a priori determine the frame compliance of the test system in a 

quantitative manner (refer to the details in the subsequent section). In the 

latter test system (b), on the other hand, due to detecting the displacement 

of the indenter-tip relative to the specimen-surface, the undesirable effect 

of frame compliance is insignificant. Accordingly, we can determine the 

mechanical characteristics such as the Meyer hardness, elastic modulus, 

and the yield stress in a quantitative manner without any corrections of 

the frame compliance, while it is rather difficult for us to conduct 

indentation testing at elevated temperatures that is contrary to the former 

test system (a). In both of the test systems, we must pay attention to 

tightly fixing the test specimen on the holder in order to eliminate 

undesirable errors in measuring the penetration depth.  
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   V.A. Alekhim, Sov. Phys. Doki., 26, 769 
      (1981) 
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Figure 11.4 Instrumented micro/ 
nano indentation test systems:  
(a) sensing the relative depth of 
penetration, and 
(b) sensing the absolute depth of 
penetration 
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(1) Experimental determination of the frame compliance 
 Aw well discussed in the preceding section, the elastic deformation of 

the frame, i.e., the frame compliance, has always undesirable effect on 

determining the mechanical characteristics such as the elastic modulus, 

viscoelastic functions, etc. in micro/nano indentation testing. 

  Suppose a perfectly elastic indentation contact and define the observed 
penetration depth as obsh , the actual depth of penetration as h , and the 

indentation load as P , then the following relations are given; 

  obs obs

obs f

h C P
h h h

=
= +

 (11.1) 

where fh   represents the frame-deformation-induced penetration, and 

obsC  is defined as the elastic compliance observed. Once we define the 

elastic compliance of test specimen C   by h CP=  , and the frame 
compliance fC  by f fh C P= , then the observed compliance obsC  is 

related to the specimen’s compliance C  as follows; 
 obs fC C C= +  (11.2) 

via the frame compliance fC  . In most of the commercially available 

conventional instrumented indentation test systems, their frame 
compliance is to be f 200C ≈ nm/N.   

  The load vs. penetration depth hysteresis curve (P–h loading/ 

unloading curve) of an elastoplastic body is depicted in Fig. 11.5. Since 

the unloading curve is resulted from the elastic recoveries of the test 

specimen and of the apparatus frame, the initial slope of the unloading 

P–h curve at the maximum penetration depth maxh , being referred to as 

the unloading stiffness ( )( )maxobs hS dP dh≡ , is related to the observed 

elastic compliance obsC  through the inverse relation of obs obs1S C= . 

On the other hand, when we substitute the relation of C dh dP=  into 

Eqs. (3.33) and (3.34), for arbitrary axisymmetric indenters including 

spherical, conical, and pyramidal indenters, the unloading compliance is 

related to the elastic modulus 'E  of the specimen tested [9.4]; 

 ( )obs obs f
c

11
2 '

C S C
E A
π≡ = + , (11.3) 

where cA  stands for the contact area at the maximum indentation load 

maxP . The contact area cA  is related to the contact depth of penetration 

hr

Sobs
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Pmax

( )obs obs f
c
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Figure 11.5 Loading/unloading P-h 

hysteresis curve of an elastoplastic 
body. The initial slope obsS   of the 

unloading curve is referred to as the 

unloading stiffness; there is an 

inverse relation between the 
observed compliance obsC   and the 

unloading stiffness obsS  , i.e., 

obs obs1S C=  
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ch   via the formula of 2
c cA gh=   in terms of the area index g   (the 

Vickers/Berkovich indenters; 24.5g = ) for deep penetration, where we 

can neglect the effect of indenter’s rounded-tip on the indentation contact 

behavior. Furthermore, there exists a quantitative correlation of 

c c maxh hη=  between the contact depth ch   and the penetration depth 

maxh  at the maximum indentation load, where the relative penetration 

depth cη  is given by the function of plastic index  I 'E cYε  (refer to 

Fig. 5.6). Substituting the preceding formulas into Eq. (11.3), both of 

the experimentally observable parameters ( )obs obs1 /C S≡   and maxh

are correlated in the following equation via the frame compliance fC ; 

  ( )obs obs f
maxc

1 11 /
2 '

C S C
E hg
π

η
≡ = +  (11.4) 

 An example of the obsC - max1 h  plot is shown in Fig. 11.6 in order to 

scrutinize the preceding procedure for determining the frame compliance 

fC , where all the data are of the FEA-created model elastoplastic body 

(the elastic modulus 100E =  GPa, yield stress 10Y =  GPa, and the 

Poisson’s ratio 0.3ν =  ) indented by a Vickers/Berkovich equivalent 
cone with the truncated tip-radius t 100R = nm (see Fig. 11.2). The frame 

compliance is a priori set to be f 200C =  nm/N in this FEA-based 

modeling. In Fig. 11.6, we can readily confirm that the frame compliance 

fC  determined from the intercept of the y-axis (the axis of ordinate), and 

the elastic modulus 'E   calculated from the slope of obsC  - max1 h  

linear plot coincide well with those a priori fixed in the FEA-model. In 

other words, Fig. 11.6 indicates that we can successfully determine in 
experiment the frame compliance fC   from the obsC  - max1 h   linear 

plot obtained in the conventional instrumented indentation apparatus.  
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Figure 11.6 obsC   vs. max1 h   plot 

for determining the frame compliance 

fC  in experiment 

   (FEA-based numerical results) 
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 The unloading compliance ( )obs fC C C≡ −   of these FEA-based 

numerical results is plotted in Fig. 11.7 against the penetration depth 

maxh  in a double-logarithmic way in order to evaluate the tip-radius tR  

of the indenter used, since there exist the relations of 

  ( ) ( )1/2
max max1/ 1 2 logC dh dP h h≡ ∝ → −    

for spherical, and 

  ( )max max1/ logC h h∝ → −  

for conical indentation (refer to Eqs. (3.18) and (3.25)).  As a matter of 

fact, Fig. 11.7 demonstrates the linear log-log plots with the slope of  

-1 in the region of conical indentation and with the slope of -1/2 in the 

region of spherical indentation. There exists, therefore, the spherical-to-

conical transition in the region of max10nm 60nmh≤ ≤  that is marked 

by the hatched zone in Fig. 11.7. This transition is actually resulted from 

the tip-geometry of the indenter (Fig. 11.2) modeled in the present FEA 

Experimental procedure for determining the frame compliance of 
instrumented indentation apparatus 
 
(1) Experimental determination of ( )obs obs1C S≡   vs. maxh  

relations at several discrete values of ( )max 500nmh ≥  by the use of a 

higher-modulus material such as a brittle ceramic; a higher-modulus 

material enhances the deformation of the frame, thus leading to 
determining the frame-compliance fC  with a higher precision.   

 (2) Determination of fC  from the intercept of the obsC  vs. max1 h  

linear plot (see Fig. 11.6) obtained in the procedure (1). 

 

* Once we use a test material having the known elastic modulus 'E  

such as a fused silica, we can readily determine cη  from the slope 

( ( )c2 'E gπ η= ) of the linear obsC  vs. max1 h  plot, then we can 

correlate maxh   to the contact depth c c maxh hη=  as well as to the 

contact area ( )2
c cA gh=   
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Figure 11.7 Double-logarithmic plot 

of the unloading compliance

( )obs fC C C≡ −   vs. the penetration 

depth maxh   (FEA-results for an 

elastoplastic body with the elastic 

modulus 100E =  GPa, Poisson’s 

ratio 0.3ν =   and the yield stress

10Y = GPa) 
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having the tip-radius t 100R = nm and [ ]sphere t (1 cos ) 5.85h R β= − = nm. 
 As well demonstrated in the preceding FEA-results, once we determine 
the frame compliance fC  in experiment, we can readily determine the 

tip-radius of the commercially available pyramidal indenter through the 
double-logarithmic plot of the unloading compliance ( )obs fC C C≡ −  

vs. maxh  as shown in Fig. 11.7.  Along with this compliance method, 

making direct observation for the tip of indenter through a scanning probe 

microscope refines the experimental determination of the indenter’s tip-
radius tR .  
 
(2) Experimental determination of elastoplastic characteristics 
 The mechanical characteristics such as the elastic modulus and the 

yield stress can, therefore, be determined in indentation tests through 

analyzing the indentation load P   vs. the penetration depth h  

hysteresis, i.e., the loading/unloading P - h  hysteresis relation, once we 

have completed an a priori evaluation of the frame compliance and the 

tip-geometry of the indenter used. As mentioned in the preceding sections, 

however, due to the incapability of determining the indentation contact 

area A  in the conventional instrumented indentation test systems, we 

have to reckon the approximation and assumption and/or the FEA-based 

calibration to estimate the contact area, leading always to somewhat 

uncertainty and inaccuracy in experimentally determining the mechanical 

characteristics from the P - h  hysteresis relation observed.  
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【Procedure for determining the elastoplastic characteristics  
                    from the P - h  hysteresis observed in experiment】 
 
 The flow chart for determining the elastoplastic characteristics from the observed P - h  

hysteresis of pyramidal indentation is given in Fig. 11.8: Figures 1 and 2 in the flow chart 
exhibit the key parameters; the maximum penetration depth maxh  , depth of residual 

impression rh   that is attributed to the plastic deformation, loading coefficient 1k  

including the elastoplastic information, and the unloading coefficient 2k  that is resulted 

from the elastic recovery of indentation-induced impression. 

 

(1) Apply the observed dimensionless residual depth r maxh h  to the y-axis of Fig. 3 (FEA-

derived plot; see Fig. 10.9), and then determine the plastic index ( )I 'PI E cYε=  from the 

x-axis 
(2) In a similar way, apply the observed r maxh h  to the x-axis of Fig 4 (see Fig. 10.10) in 

order to determine the dimensionless contact depth c maxh h   from the y-axis. Instead of 

using this graphical procedure, the Oliver-Pharr elastic approximation (Eq. (10.8)) is also 
applicable to determining c maxh h  

(3) Determine the contact radius ca   through the relation c c= cota h β   by the use of ch  

obtained in the preceding procedure (2), then calculate the contact area using the relation of 

( ) ( )2 2 2
c c ccotA a hπ π β= =  , leading to the determination of the Meyer hardness MH   

from cA  combined with the maximum indentation load maxP ; 

 ( ) ( )2 2
M max c max ctanH P A P hβ π≡ =  (11.5) 

(4) Apply the plastic index PI determined in the preceding procedure (1) to the x-axis of Fig. 
5 (see Fig. 10.7) and of Fig. 6 (see Fig. 10.8), then determine 1k Y  and 2 'k E  from the 

respective y-axes.  Since the values of 1k   and 2k   have already been known in the 

observed P - 2h  plot in Fig. 2, we are ready to determine the elastic modulus 'E  and the 
yield stress Y  of the elastoplastic body 

(5) Apply the plastic index PI obtained in Fig. 3 to the x-axis of the FEA-derived Fig. 5.3, 
then determine the constraint factor c  from the corresponding y-axis of the normalized 
hardness of MH cY , because the values of MH  and Y  have already been determined in 

the preceding procedures of (3) and (4)  
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(3) Experimental determination of viscoelastic functions 
 As discussed in Chap. 7, without measuring the indentation contact 
area ( )A t  in a quantitative manner, it is impossible for us to obtain any 

of viscoelastic functions such as the stress relaxation modulus relax' ( )E t  
and the creep compliance function creep' ( )C t  . In the conventional 

instrumented indenters, however, we have to estimate the time-dependent 
contact area ( )A t   from the penetration depth ( )h t   observed in 

experiment through the assumption/approximation, resulting in the very 

qualitative viscoelastic functions, not the quantitative material 

characteristics.  

  As emphasized in the preceding sections, due to the luck of 
geometrical similarity, the indentation strain Iε   of spherical or flat-

ended cylindrical indenter is dependent on the penetration depth or the 

contact area. This fact results in undesirable complexity for analyzing the 

time-dependent viscoelastic characteristics. To circumvent this difficulty, 

we make the viscoelastic analysis only for conical/pyramidal indentation 

contact in this section like as the considerations we made in Chap. 7; the 

viscoelastic constitutive equations for conical indentation given in Chap. 

7 (see Eq. (7.3)) are  

 
relax

0

creep
0

tan ( ')( ) ' ( ') '
2 '

( ')( ) 2cot ' ( ') '
'

t

t

dA tP t E t t dt
dt
dP tA t C t t dt

dt

β

β

= −

= −







 (11.6) 

Equation (11.6) alternatively represented in terms of the penetration 
depth ( )h t  is given as follows;  

      

{ }2 2
c

relax
0

2 2
c creep

0

( ') ( ')cot( ) ' ( ') '
2 '

2 tan ( ')( ) ( ) ' ( ') '
'

t

t

d t h t
P t E t t dt

dt

dP tt h t C t t dt
dt

ηπ β

βη
π

= −

= −








 (11.7) 

in which the relative contact depth of penetration ( )c tη  is defined by 

( ) ( ) ( )c ct h t h tη =  . The ( )c tη  -value of a perfectly elastic body is 

always time-independent having the value of c 2η π=   (refer to Eq. 

(3.28)). Furthermore, cη   for elastoplastic indentation is also time-

independent material characteristic as shown in Eq. (10.8) and in Fig. 

10.10. On the other hand, as seen in Eq. (11.7) even for conical 
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indentation contact, we have to take into account the time-dependent 

nature of ( )c tη   for viscoelastic indentation contact. The time-

dependent ( )c tη  -values are shown in Fig. 11.9, by way of example, 

under the step-wise penetration of ( ) 3h t ≡  μm ( 0t ≥ ) for the Vickers/ 

Berkovich-equivalent cone indented on the viscoelastic Maxwell liquids 

having various values of their Poisson’s ratios ( ( )0ν =  0.1, 0.3, and 0.5) 

(FEA-based numerical results). The ( )c tη -value of the incompressible 

viscoelastic body with ( )0 0.5ν =   is always time-independent 

( c 2η π=  ) like as a perfectly elastic body, while for the viscoelastic 

liquids with ( )0 0.5ν < , ( )c tη  monotonically increases along with the 

load relaxation, though the applied penetration is kept constant of 

( ) 3h t ≡  μm in a step-wise manner. This fact implies that the free-surface 

outside the contact area creeps-up during load relaxation. 

  We can neither measure the time-dependent ( )ch t   nor determine 

( )c tη   in experiments on the conventional instrumented indenter. We 

have therefore no choice but to simply assume the time-independent 

elastic value of ( )c 2 /tη π≡   in Eq. (11.7), leading to the following 

approximated viscoelastic constitutive equations;  

        

{ }2

relax
0

2
creep

0

( ')2cot( ) ' ( ') '
'

tan ( ')( ) ' ( ') '
2 '

t

t

d h t
P t E t t dt

dt

dP th t C t t dt
dt

β
π

π β

= −

= −








 (11.8) 

 
(i) Step-wise penetration test 

 In Eq. (11.8), the indentation load relaxation ( )P t   observed under 

the step-wise penetration to 0h  

   0( ) ( )h t h u t= , (11.9) 
is related to the relaxation modulus relax' ( )E t  as follows, 

 
2

0
relax

2 cot( ) ' ( )hP t E tβ
π

= , (11.10) 

while under the step-wise loading to 0P  

 0( ) ( )P t P u t= , (11.11) 
the resultant creeping penetration depth ( )h t   is related to the creep 
compliance function creep' ( )C t  in the following equation;  

Figure 11.9 Poisson effect on the 
time-dependent relative contact depth 

( )c tη  for the Maxwell liquid with the 

relaxation modulus: 

    ( )relx g( ) expE t E t τ= −  

( gE =80GPa, τ =200s) under a step-

wise penetration (numerical FEA-

results) 
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 2 0
creep

tan( ) ' ( )
2

Ph t C tπ β
=  (11.12) 

We can, therefore, determine the relaxation modulus relax' ( )E t  from the 

relaxation load ( )P t   and the creep function creep' ( )C t   from the 

creeping penetration 2 ( )h t   in these step-wise penetration tests. In 

addition to neglecting the time-dependent nature of ( )c tη  in deriving 

Eq. (11.8), it must be noticed in this context that the frame compliance 

fC   of the instrumented apparatus inevitably induces the creeping 

penetration ( )h t   during the load relaxation ( )P t   even for the 

stepwise penetration to 0h ; 
 0 f( ) ( )h t h C P t= −  (11.13) 

This frame-compliance effect implies that the relaxation time τ   is 

always significantly overestimated, resulting in an undesirable estimate 
of the relaxation modulus relax' ( )E t  in Eq. (11.10). On the other hand, 

for step-wise loading of 0( ) ( )P t P u t=   as well as for constant-rate of 
penetration ( ) hh t k t= ⋅   or ( ) PP t k t= ⋅  , as will be discussed in the 

subsequent section, we do not need to take care of the complexity and the 

difficulty associated with the frame compliance due to their indentation 
tests without load relaxation, i.e., ( ) (0)P t P≥  .  Even for the 

viscoelastic deformations without load relaxation, however, it must be 

noticed the fact that there exist crucial difficulties in the reliability and 

the accuracy of the viscoelastic functions estimated through using Eq. 

(11.8), because it has been derived by making a fatal assumption of the 
time-independent ( )( )c 2tη π≡ .  

 
(ii) Constant-rate of penetration test 
 The application of Eq. (11.8), i.e., Eq. (11.7) with ( )( )c 2tη π≡ , to 

the constant-rate of penetration test  
 ( ') 'hh t k t=  (11.14) 

and to the constant loading test 
 ( ') 'PP t k t=  (11.15) 

leads to the following viscoelastic constitutive equations, respectively;

 

2
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2
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kh t C t t dt

β
π
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= −




 (11.16) 
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Once we apply the Laplace transform and its inversion to Eq. (11.16), we 

finally have the following formulae of the relaxation modulus and the 

creep compliance function; 

 

( )

( )
( ){ }

2

relax 2 2

2

creep

tan ( )'
4

2cot'

h

P

d P tE t
k dt

d h t
C t

k dt

π β

β
π

=

=

 (11.17) 

We can, therefore, readily determine these viscoelastic functions in terms 

of the time-dependent indentation load ( )P t  and the penetration depth 

( )2h t  observed in experiments. 

 
11.3 INSTRUMENTED INDENTATION MICROSCOPE 
 We have repeatedly emphasized the key roles of the indentation contact 

mechanics in the micro/nano materials science for studying the materials 

characteristics (elastic, elastoplastic, viscoelastic characteristics). We 

have also emphasized the importance of the indentation contact area A  

induced by the applied indentation load P , or the interrelation of the 

applied contact area A   to the resultant indentation load P   (see in 

Chaps. 4 ~ 9).  As described in Sec. 11.2, however, it is impossible for 

us to measure the contact area A   in the conventional instrumented 

indentation apparatuses, although we can measure the penetration depth 

h   in a quantitative manner. In these conventional test apparatuses, 

therefore, we have to determine the mechanical characteristics through 

making appropriate assumptions/approximations to estimate the contact 

area A  from the penetration depth h  observed in experiments. On the 

other hand, upon using the instrumented indentation microscope, we can 

easily measure the contact area A  as a function of the indentation load 

P  and/or of the penetration depth h  , then readily determine the 

mechanical characteristics without relying on any of undesirable 

assumptions/approximations.  
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(1) Basic configuration of the apparatus and  
         the principle of measuring the contact area [11.7 - 11.9] 
 The basic configuration of the instrumented indentation microscope is 

depicted in Fig. 11.10. The optical image of the contact area A 

measured at the contact interface is stored into a personal computer as the 

digital data through an optical microscope combined to a CCD camera.  

In Fig. 11.11, shown are the schematic details of (a) the dark field and (b) 

the bright field microscopies that are utilized in the indentation 

microscope. As shown in these figures, not only the inlet but also the 

outlet beams must be transferred through the indenter, indicating that the 

indenter must be transparent for the beams. In this context, the 

conventional diamond indenter is always applicable to the indentation 

test in air, i.e., in oxidative environments under 300oC, while an indenter 

made of sapphire is the most appropriate at temperatures in 

300oC~1200oC.  The test specimen shown in Fig. 11.10 is lifted up to 

the indenter fixed to the test frame. The indentation load P  is measured 

by the load cell that is arranged in series beneath the specimen, and the 
penetration depth h   is monitored by a displacement sensor (a linear 

transducer or a capacitance sensor).  All of the mechanical 

characteristics can be readily determined in a quantitative manner once 

we get the contact area A  as a function of the applied load P  on this 

instrumented indentation microscope, implying no need of monitoring 
the penetration depth h , the details of which will be discussed in the 

following section.  The penetration depth sensor equipped in the 

indentation microscope, however, is required in order to confirm the 

consistency of the P  - h   relation to that of the conventional 

instrumented indentation apparatuses.  It must be noticed furthermore 

that we do not need to take into account the effect of the frame 
compliance fC   (refer to Sec. 11.2(1)), since all the mechanical 

characteristics are quantitatively determined from the P  - A   relation 

directly observed on the instrumented indentation microscope.   
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Figure 11.11 The inlet/outlet beams 

to monitor the indentation contact 

images: (a) dark field microscopy, (b) 

bright field microscopy 
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[11.7]  T. Miyajima, M. Sakai, Phil. Mag, 86[33-35], 5729 (2006) 
[11.8]  M. Sakai, N. Hakiri, T. Miyajima, J. Mater. Res., 21[9], 2298 (2006) 
[11.9]  N. Hakiri, A. Matsuda, M. Sakai, J. Mater. Res., 24[6], 1950(2009) 
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Figure 11.10 Basic configuration of 
the instrumented indentation micro- 
scope
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The optical image of contact area A   is digitized and stored in a 

personal computer as the binary image in relations to the scanning time, 

indentation load and the penetration depth.  An example of the optical 

image (bright-field image) and its digitized binary image is shown in Fig. 

11.12 for Berkovich indentation onto a polycarbonate resin. In the 

instrumented indentation microscope, it is also possible for us to control 

 the contact area A   applied to the test specimen as a function of 

scanning time by feeding these digital date back to the displacement 

actuator; in time-dependent viscoelastic indentation tests, by way of 

example, we can conduct the indentation tests not only for applying a 

constant-rate contact area to the specimen ( ( ) AA t k t= ⋅ ), but also for a 

step-wise penetration to a constant contact area ( ( ) ( )0A t A u t= ), leading 

to the quantitative determination of the stress relaxation modulus and the 

creep compliance function, the details of which have already been given 

in Chap. 7 .  
 

(2) Determination of elastoplastic characteristics 
  We can quantitatively determine the elastoplastic characteristics such 
as the Meyer hardness MH , elastic modulus 'E  and the yield stress Y  

in the instrumented indentation microscope through analyzing the 

loading-unloading hysteresis relation of the indentation load P  and the 

contact area A , i.e., the P - A  hysteresis relation without making any 

assumptions and approximations. The loading-unloading P  - A
hysteresis relations are shown in Fig 11.13(a) for the Vickers indentation 

test results of silica glass and silicon nitride ceramic, and in Fig. 11.13(b) 

for the FEA-based numerical result of an elastoplastic body indented by 

the Vickers/Berkovich-equivalent cone.  As clearly shown in these 

figures, not only the loading but also the unloading P - A  relations are 

linear. The slope of the loading line gives the Meyer hardness itself (see 
Eq. (5.1b)), while the unloading slope ( )I 'M Eε≡   (the unloading 

modulus) is directly related to the elastic modulus 'E ;  

 tan '
2

M Eβ=  (11.18) 

where use has been made of the indentation strain of I tan 2ε β=  for 

pyramid/cone indentation. We can, therefore, readily determine the 
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Figure 11.13  
(a) Loading-unloading P - A

linear relations of silica glass 

and silicon nitride ceramic 

observed on the instrumented 

indentation microscope    
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(b) FEA-based numerical result 
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Figure 11.12 Optical and its binary 

images of the contact area of a 

Berkovich indenter pressed onto a 

polycarbonate resin 
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elastic modulus 'E  from the unloading modulus M  observed on the 

indentation microscope. Furthermore, “the additivity principle of the 

excluded volume of indentation” (see Eqs. (5.13a) and (5.14) in Chap. 5), 

leads to the following formula of cone/pyramid indentation;  

 
( )3/2 3/2 3/2

M

1 1 1
H McY

= −  (11.19) 

Substituting the Meyer hardness MH   and the unloading modulus M  

thus directly determined from the loading/unloading slopes of the linear 

P - A  relations into the right-hand side of Eq. (11.19), we finally obtain 
the yield stress cY  , and then the plastic index PI   as a measure of 

plasticity (refer to Chap. 5) 
 ( )'IPI E cY M cYε≡ =  (11.20) 
is readily fixed in terms of M  and cY  in experiment by the use of the 

instrumented indentation microscope. 

 

(3) Determination of viscoelastic functions [7.5] 
 The viscoelastic constitutive equation in terms of the contact area for 

cone/pyramid indentation is described by  

 ( ) ( ) ( )3 2 3 2 3 2
ve pA t A t A t= −  (11.21) 

through applying the elastic-to-viscoelastic corresponding principle (see 

Chap. 6) to Eq. (5.13a). Equation (11.21) implies, therefore, that we have 

to eliminate the plastic contribution of pA  from the contact area ( )A t  

observed on the instrumented indentation microscope prior to 

determining the viscoelastic contact area ( )veA t  , and then the 

viscoelastic functions, as follows: 

(1) Experimental determination of cY  through the procedures given in the preceding section (2) using the 

elastoplastic P  - A   loading/unloading linear relations in the higher-rate penetration test (i.e., the 

time/rate-independent indentation test with invisible viscoelastic flow) , followed by 

(2) Determination of the plastic contact area ( )pA t  by substituting this cY -value into ( ) ( )pA t P t cY= , 

and then 

(3) Determination of the viscoelastic contact area ( )veA t  by the uses of ( )P t  and ( )A t  both observed on 

the instrumented indentation microscope via the following relation derived from Eq. (11.21); 

  [ ]{ }2/33/23/2
ve ( ) ( ) ( )A t A t P t cY= −     (11.22)  
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(i) Step-wise penetration tests 

 Using the function of feed-back controlling of the instrumented 

indentation microscope, we can conduct the test of step-wise penetration 

to a constant contact area 0A , i.e., ( ) ( )0A t A u t= , and then measure the 

resultant indentation load relaxation ( )P t . The viscoelastic indentation 

contact area ( )veA t  in this test is, therefore, given by 

 ( ) [ ]{ }2/33/23/2
ve ve 0( ) (0)A t A A P cY≡ = −  (11.23) 

via Eq. (11.22). It must be noticed in Eq. (11.23) that ( )( )ve veA t A≡  is 

time-independent, because the plastic contact area 

   ( )p p( ) (0) (0)A t A P cY ≡ =   

induced at the onset of the load relaxation ( )0P  is time-independent 

constant due to the irreversible nature of plastic flow, although the 

viscose flow still results in the load relaxation under this step-wise 

penetration of ( ) ( )0A t A u t=  . Accordingly, substituting the ( )veA t  -

value calculated in Eq. (11.23) combined with the observed load 

relaxation ( )P t   into Eq. (7.6), we readily determined the stress 

relaxation modulus, as follows; 

   relax
ve

( )' ( ) 2cot P tE t
A

β=  (11.24) 

 In step-wise loading to a constant indentation load 0P  , i.e., 

( ) ( )0P t P u t=  , the indentation contact area ( )A t   observed on the 

indentation microscope increases with time in a monotonic manner 

resulting in a creep deformation. Accordingly, the creep compliance 

function ( )creep'C t   is determined in experiment by substituting the 

viscoelastic contact area [ ]{ }2/33/23/2
ve 0( ) ( )A t A t P cY= −  into  

Eq. (7.6);  

 ve
creep

0

( )tan' ( )
2

A tC t
P

β=  (11.25) 

The creep compliance ( )creep'C t  of an amorphous selenium (Se) at 

its glass-transition temperature ( g 30.0T =   C)) determined on the 

indentation microscope is plotted against time in Fig. 11.14 for a 

Berkovich indentation, where demonstrated are both the compliance 

Figure 11.14 Creep compliance 

function of an amorphous selenium at 

30.0T =  C for Berkovich indenta-
tion in step-wise loading to a constant 
load 0P , i.e., ( ) ( )0P t P u t= . 

  To demonstrate the effect of the 

plastic deformation, the creep 

compliance functions determined 

from the viscoelastic contact area 
( )veA t  with plastic correction 

( ( )p 0A t P cY= ) (the closed circles, 

●) and from the observed contact 
area ( )A t   without plastic 

correction (the open triangles, △) are 

plotted against time. Both of the 

creep functions represent an 

asymptotic coincidence in the long-

time region since the plastic 

deformation induced at the onset of 

the step-wise loading becomes 

relatively insignificant with the 

increase in the viscoelastic creep 

under viscus flow 
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functions determined from the viscoelastic contact area ( )veA t   with 

plastic correction (the closed circles) and from the observed contact area 

( )A t  without plastic correction (the open triangles) for comparison.   
 

(ii) Constant-rate of loading test 

 In constant-rate of loading test, the contact area ( )A t  combined with 

the applied indentation load ( ) PP t k t= ⋅  gives the viscoelastic contact 

area ( )veA t  via the relation of 

  ( ){ }2/33/23/2
ve ( ) ( ) PA t A t k t cY= − ⋅  

for cone/pyramid indentation.  Substituting this viscoelastic contact 

area into the second formula of Eq. (11.6) leads to the creep compliance 

function, as follows; 

 ve
creep

( )tan' ( )
2 P

dA tC t
k dt

β=  (11.26) 

Equation (11.26) indicates that we can readily determine the creep 

compliance function through the time-derivative of the viscoelastic 

contact area ( )veA t  that has been determined by eliminating the plastic 

contribution from the contact area ( )A t   observed on the indentation 

microscope.   
 

(iii) General-purpose indentation tests 
  The “step-wise penetration to a constant contact area” and/or the 

“constant-rate of loading” are the most appropriate and well 

recommended in the conventional viscoelastic indentation tests, since we 

can quantitatively eliminate the undesirable plastic contribution to the 

viscoelastic deformation and flow, leading to readily determine the 

viscoelastic functions without any approximations/assumptions, as 

mentioned in the preceding sections (i) and (ii).  On the other hand, in 

more general-purpose indentation test, we face on several mathematical 

difficulties in applying the observed data to Eq. (11.6) for determining 

the viscoelastic functions in an analytical manner. However, we can 

circumvent these difficulties through the numerical approach via using 

personal computers (PCs) that have made a remarkable breakthrough 

since the end of 20th century.  We can easily determine the viscoelastic 

functions in numerical manners by the use of PCs even for rather 
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complicated viscoelastic/viscoplastic stimulus-response phenomena in 

indentation contact problems. 

  The basic protocols for determining the viscoelastic functions are 
given as follows through the numerical analyses of the observed ( )P t  

vs. ( )A t  relation: 

First of all, the application of Laplace transform to the viscoelastic 

constitutive equation (7.3) leads to the following viscoelastic functions in 

the Laplace space 

 
relax

ve

ve
creep

( )' ( ) 2cot
( )

( )tan' ( )
2 ( )

P pE p
pA p

A pC p
pP p

β

β

=

=
 (11.27) 

In advance of conducting these Laplace transforms, we have to calculate 

the viscoelastic contact area ( )veA t   by applying the observed ( )P t  

and ( )A t  into Eq. (11.22), and then represent these ( )P t  and ( )veA t  

in their Prony series expansions (refer to the table given below) 

respectively, followed by their Laplace transforms of ( )P p   and 

ve ( )A p  , leading to ( )relax'E p   and ( )creep'C p   in Eq. (11.27). The 

viscoelastic functions ( )relax'E p   and ( )creep'C p   are, therefore, 

finally given by making their Laplace transform inversions. These 

numerical procedures for determining the viscoelastic functions are 

summarized in the following table, where we focus only on the stress 

relaxation modulus ( )relax'E t , as an example.  Similar procedures are 

also applicable to deriving the creep compliance function ( )creep'C t . It 

must be noticed, furthermore, that we can also derive the creep function 

from the stress relaxation modulus by the use of the convolution integral 

(Eq. (7.2)) in its Laplace space;  
 creep relax' ( ) 1 ' ( )pC p pE p=  (11.28) 
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【Numerical analyses for determining the viscoelastic functions】 
 
(1) Determination of the yield stress cY  in Eq. (11.19) in terms of the Meyer hardness MH  and the 

unloading modulus M  using the slopes of the loading/unloading P ‐ A  linear plot (see Fig. 11.13) 

in the time-independent elastoplastic regime through conducting a higher-rate indentation test. 

 

(2) Determination of ( )veA t  by substituting the observed ( )P t ‐ ( )A t  relation combined with the cY -

value into Eq. (11.22), where ( )P t  must be fixed to ( )0P  in the load-relaxation test whenever the 

load ( )P t  at time t  is smaller than that at the onset of the relaxation, i.e., ( ) ( )0P t P≤  (refer to the 

details given in Sec. (i) ). 
 
(3) Description of ( )P t  and ( )veA t  in their Prony series expansions using the collocation method; 

 
( )

( )

e 1
1

ve e 2
1

( ) exp /

( ) exp /

n

i i
i

n

i i
i

P t P P t

A t A A t

λ

λ

=

=

= + −

= + −




  (11.29) 

 

(4) Substitution of the Laplace transform of Eq. (11.29), 

 

e

11

e
ve

21

( )
1

( )
1

n
i

ii
n

i

ii

P PP p
p p

A AA p
p p

λ

λ

=

=

= +
+

= +
+




,   (11.30) 

into Eq. (11.27) in order to describe relax' ( )E p  in the following formula by the use of collocation 

method;  

  e
relax

1
' ( )

1

n
i

ii

E EE p
p p τ=

= +
+    (11.31) 

 

(5)  Laplace transform inversion of Eq. (11.31) finally results in the stress relaxation modulus; 

 ( )relax e
1

' ( ) exp /
n

i i
i

E t E E t τ
=

= + −   (11.32) 
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MATERIALS PHYSICS BASED ON THE 
EXPERIMENTAL DATA OF INSTRUMENTED 
INDENTATION TESTING 
 
12.1 THE EFFECT OF TIP-GEOMETRY OF 

PYRAMIDAL INDENTATION  
ON THE CONTACT BEHAVIOR [12.1] 

  The most favorable feature of pyramidal/conical indentation is in its 

geometrical similarity, resulting in the penetration-depth-independent 

mechanical characteristics such as the Meyer hardness, elastic modulus, 

and the viscoelastic functions observed in instrumented indentation 

testing, unlike the penetration-depth-dependent characteristics of 

spherical indentation. On the other hand, however, there exists a minor 

demerit resulted from the geometrical discontinuity at the pyramidal 

edges that leads to the mathematical complexity in analyzing the 

indentation contact mechanics.  This is the reason why we have 

exclusively adopted in the preceding chapters the Vickers/Berkovich 

equivalent cone indenter in order to circumvent the pyramidal edge- 

related difficulties.   
  In this section, based on the experimental examinations, we discuss the 

effect of the tip-geometry of the conventional pyramidal indenters on the 

indentation contact behavior of the several engineering materials; the 

indenters examined include the conventional pyramid indenters (the 

tetrahedral Vickers, trihedral Berkovich (see Fig. 11.1), tetrahedral 
pyramid indenters with various values of the inclined face angle β , and 

the Knoop indenter shown in Fig. 12.1. The Knoop indenter has widely 

been utilized in the fields of crystallography and mineralogy since its 

anisotropic tip-geometry is appropriate for examining the 

crystallographic orientation.  
 Figure 12.2 shows the P h−  loading/unloading hysteresis curves of 

a silicon nitride ceramic for the Vickers/Berkovich/Knoop indentations. 

As readily seen in Fig. 12.2, the loading/unloading hysteresis curve of the 

Berkovich indentation coincides well with that of the Vickers indentation, 
because the index of projected area g   of the Berkovich indenter 

Figure 12.2 Effect of the tip-

geometry of the conventional 
pyramidal indenters on the P h−  

loading/unloading hysteresis of 

silicon nitride ceramic;  

●：Vickers indenter 

○：Berkovich indenter 

▲：Knoop indenter 
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[12.1] J. Zhang, M. Sakai, Mater. Sci. Eng.  
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Figure 12.1 Tip-geometry of the 

Knoop indenter: 

 Ratio of  

   major/minor axes; / 7.11a b =   

 Inclined face-angle; o25.2β =  

 Diagonal apex angles; 

 o
a2 172.5ψ = and o

b2 130ψ =    

   for major/minor axes 
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( 23 3 cot 24.5g β= =  ) is design to coincide with the value of  the 

Vickers indenter ( 24cotg β=  =24.5), resulting in the same values of 

their induced contact area ( 2A gh=  ) and the excluded volume 

( 3 3V gh= ) for a given penetration depth h , the details of which have 

already been mentioned in Sec. 11.1.  The good coincidence of the 

Vickers/Berkovich indentations shown in Fig. 12.2 means that the 

indentation contact responses are equivalent both for the 

Vickers/Berkovich indentations, implying the insignificant “edge-effect” 

of the trigonal and the tetragonal pyramids.  On the other hand for 
Knoop indentation, its g  -value a b( 2 tan tan 65.4)ψ ψ= ⋅ =   is 2.7 

times larger than the value of the Vickers/Berkovich indentation, 
resulting in its P h−  loading/unloading hysteresis curve much steeper 

than that of Vickers/ Berkovich indentation, as demonstrated in Fig. 12.2. 
Furthermore, the loop energy rU  (refer to Sec. 5.2) of the P h−  

loading/unloading hysteresis curve of the Knoop indentation and its 
normalized residual depth ( )r r maxh hξ =  are significantly smaller than 

those of Vickers/ Berkovich indentations, indicating that the elastoplastic 

response of Knoop indentation is more elastic than those of Vickers/ 

Berkovich indentations. 
  Since the inclined face-angel cβ  of the Vickers/Berkovich equivalent 

cone is 19.7o (see Chap. 5), while the face-angle of the equivalent cone of 

Knoop indenter is o
c 12.4β =  (the subscript c of the face-angle β  in 

these context indicates the equivalent cone). This fact leads to more 

elastic Knoop contact than that of Vickers/Berkovich, the details of which 

is given in the following considerations. 
 The face-angle-dependence of the elastoplastic responses (the P h−  

loading/unloading hysteresis curves) of a silicon nitride ceramic is shown 

in Fig. 12.3 for the tetragonal indenters with various values of their face-

angle ( 10β =   , 22β =    (Vickers indenter), and 40β =   ); the g  -

values ( 24cot β=  ) of these indenters are, respectively, 129, 24.5 

(Vickers indenter), and 5.68, and then the corresponding face-angles of 
their equivalent cone are, respectively, cβ = 8.87o, 19.7o, and 36.6°. As 

well recognized in Fig. 12.3, the indentation contact responses become 

more plastic along with the increase in the inclined-face angle, i.e., along 

with the pyramid-tip becoming shaper. This fact is resulted from the 
increase in the plastic index ( I I' ; tan 2PI E cYε ε β= =  ) with the 

 

Figure 12.3 Loading/unloading 
P h−  hysteresis curves of a silicon 

nitride ceramic for the tetragonal 

pyramid indenters with their inclined 

face-angles; 10β =   (●), 22β = 

(Vickers)(○), and 40β =  (▲) 
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increase in the face angle β  (refer to Sec. 5.1). 

 The Meyer hardness MH  of a silicon nitride ceramic determined in 

experiments for the pyramid indenters with various values of their 

incline-face angle is plotted in Fig. 12.4 against their equivalent cone 
angle cβ  (these indenters have their tip geometry of regular tetrahedral 

pyramid except the Knoop indenter). As shown in Fig. 12.4, the Meyer 

hardness is uniquely represented by the use of the equivalent-cone angle 

cβ   even for the Knoop indenter having its highly anisotropic tip-

geometry.  
 

12.2 INDENTATION CONTACT MECHANICS OF 
ENGINEERING MATERIALS 

 In this section, we discuss the instrumented indentation testing and the 

indentation contact mechanics/physics of engineering materials ranging 

from ductile metals to brittle ceramics by the uses of the test results 

obtained on the conventional instrumented indenter and/or the 

instrumented indentation microscope. The mechanical characteristics of 

the engineering materials demonstrated in this section will play important 

roles not only in designing the microstructures of materials, but also in 

scrutinizing the reliability/accuracy of the instrumented indentation 

apparatuses.  

 
(1) Loading/unloading P h−  hysteresis curve and the elastoplastic 

characteristics [12.2] 
 The loading/unloading P h−   hysteresis curves of the engineering 

materials indented by Vickers pyramid are plotted in Fig. 12.5 (the 
2P h−  plots discussed in Secs. 5.2, 10.3, and 11.2). It is readily seen that 

the hysteresis loop energy rU   of the ductile metal (aluminum, Al) is 

very significant comparing to that of the brittle ceramic such as silicon 
nitride ceramic (SiC). Since the loop energy rU  stands for the energy 

dissipation associated with indentation-induced plastic flow (refer to Sec. 

5.2), it plays an important role in characterizing the elasticity/plasticity 

of engineering materials, as clearly seen in Fig. 12.5.  

  The normalized residual depth of indentation-induced impression 
( )r r maxh hξ =   is also an important elastoplastic characteristic (there 

exists one-to-one correlation between  rξ   and the loop energy rU  ; 

 
Figure 12.5 2P h−   hysteresis 
curves for the Vickers loading/ 

unloading indentation: 

SiC: silicon carbide  

MgO: magnesia 

SL-Glass: soda-lime glass 

GLC: glassy carbon (GL-200H) 

HMV100: copper/zinc alloy 

  (Vickers hardness standard; 

                    HV=1GPa) 

Al: metallic aluminum (99% pure) 

PMMA: methyl methacrylate resin
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Figure 12.4 Meyer hardness of a 

silicon nitride ceramic determined in 

experiments for tetrahedral pyramid 

indenters. The solid line is the 

analytical prediction (Eq. (5.14) with 

m=3/2) 
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refer to Secs. 5.2 and 10.3), and easy to be determined in experiment 

without any undesirable complications that are required in calculating the 
area integral for determining rU . The rξ -values are shown in Fig. 12.6 

for the various types of engineering materials. Table 12.1 summarizes the 

elastoplastic characteristics of the engineering materials, in which the 

materials demonstrated in Figs. 12.5 and 12.6 are also included. 
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m
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h

ξ
=

 
Figure 12.6 Normalized residual depth ( )r r maxh hξ =   of indentation-induced impression of 

engineering materials; the loading and the unloading paths of a perfectly elastic material coincide with 

each other, resulting in r 0ξ =  , while the perfectly plastic body yields r 1ξ =   due to none of elastic 

recovery in its unloading process. The details of the elastoplastic characteristics of these engineering 

materials are summarized in Table 12.1. 

142



 
 It must be noticed in Figs. 12.5, 12.6, and Tab. 12.1 that the mechanical 

characteristics of the glassy carbon and the magnesia are very unique. 

The glassy carbon looks like a perfectly elastic body; the elastic recovery 

is very significant in its unloading process, leading to none of residual 
impression, r 0ξ ≈ .  This very unique indentation contact behavior is 

resulted from its microstructure, the details of which will be discussed in 

the subsequent section. On the other hand, the contact behavior of 
magnesia is very ductile with r 0.86ξ =   like a ductile metal as 

demonstrated in Fig. 12.6, although it is a ceramic. The isotropic cubic 

crystallography of magnesia results in such a very ductile nature. In 

general, however, the very anisotropic crystallography of most of 
ceramic materials leads to their brittleness, resulting in their rξ -values 

less than 0.7.  

 

(2) Indentation-induced elastoplastic behavior of carbon materials  

 Most of organic materials are carbonized by heat-treatment at elevated 

temperatures, yielding various types of carbons with their unique 

microstructures depending on the chemical structures of these organic 

Table 12.1 Material characteristics of engineering materials 
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precursors. Carbon materials are categorized into the graphitizable 

carbon and the non-graphitizable carbon: The former is easily graphitized 

at the heat-treatment-temperatures (HTT) exceeding 1500oC, yielding 

extensively developed graphite crystals that lead to significant plastic 

deformation resulted from the prominent slippages along the graphite 

basal planes, while the latter is rather brittle even heat-treated at 

temperatures exceeding 2000oC due to the spatially suppressed growth of 

graphite crystals in nano-regions. 
 
(a) Glassy carbon [12.3] 
 The significant brittleness of glassy carbon (Glass-Like Carbon; GLC) 

leads to engineering difficulties in its machining such as cutting/grinding. 

Due to the conchoidal appearance of its fracture surface like that of 

inorganic glasses, it is also referred to as “glassy” carbon, although the 

indentation contact behavior of GLC is totally different from that of 

inorganic glasses. Details of the indentation contact mechanics of GLC 

will be given in this section along with its nano-structure. 

  The specific brittleness of GLC is resulted from the 

crystallographically disordered carbons that are made by the pyrolysis 

of thermosetting polymers (phenol/ epoxy/cellulose resins) heat-treated 

at elevated temperatures (1000oC~2500oC). The microstructure of GLC 

contains a significant amount of “closed nano pores”; the porosity is 

25~30 vol%, the pore diameter ranges from 0.5 to 5 nm, and the specific 

surface area of the nanopores is of the order of several hundred m2/cm3. 

All of the nanopores are essentially inaccessible to nitrogen gas; the 

respective nanopores are surrounded by the partition walls of hexagonal 

networks of carbon atoms.  
 In Fig. 12.7, the P h−  loading/unloading hysteresis curve of a GLC 

is given in comparison to that of a soda-lime glass (SLG); it should be 

noticed for the GLC that the unloading path goes closely back along its 
loading path to the origin of the P h−  curve with insignificant amount 
of energy dissipation (i.e., very small hysteresis loop energy, rU ) and 

without any residual indentation impression after complete unloading, 

unlike the SLG that leaves behind a well-defined residual indentation 

impression. The purely elastic deformation of nano-size partition walls 
surrounding the nanopores of GLC results in such a unique P h−  

Figure 12.7 
P h−   loading/unloading hysteresis 

curves of soda-lime glass (SLG) and 

glassy carbon (GLC) 
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loading/unloading hysteresis.  

  Scanning electron micrographs (SEM) of the residual indentation 

impressions for GLC and SLG made by Vickers indentation (P=98.1N) 

are shown in Fig. 12.8. As well illustrated in Fig 12.8 (c) of the SLG, the 

Vickers indentation usually results in two sets of median/radial cracks in 

the form of mutually perpendicular cracks in directions parallel to the 

pyramidal indentation diagonals. On the other hand, the most important 

feature of the indentation-induced surface damage patterns of the GLC is 

its concentric ring cracks (Fig. 12.8 (a)), which are very anomalous in 

brittle materials under a sharp indenter like the Vickers pyramid indenter. 

Furthermore, as clearly seen in Fig. 12.8 (b), a well-defined cone crack 

develops from one of the surface ring cracks. Such a well-developed cone 

crack induced by a sharp indenter has never been reported in other brittle 

ceramics, although a partially developed cone crack by Vickers 

indentation in fused silica glass has only been reported. These anomalous 

cone cracks of GLC and fused silica make an angle of about 30o with the 

specimen surface, being significantly different from the Hertzian cone 

angle (about 22o) usually made by a spherical indenter on brittle materials.  

These anomalous ring/cone cracks induced by a pyramid indenter are 

resulted from the microscopically open structures of GLC and fused 

silica; the nano-porous structure in the former and the three-

dimensionally developed silica (SiO2) chain networks in the latter. 

 
(b) Polycrystalline graphite [12.4] 
 As mentioned above, due to its non-graphitizable nature, GLC is very 

brittle and hardly machining. On the other hand, polycrystalline graphites, 

that are referred to as the graphitizable carbon, are highly plastic/ductile 

and easily machining with high precision. They are extensively utilized 

not only as the graphite blocks of nuclear power reactors, but also as 

various types of engineering tools in semiconductor industries. Most of 

polycrystalline graphites are produced by baking molded green bodies 

[coal/petroleum-derived coke grains (several microns or less) bonded by 

pitch binder] at about 1000oC, and then followed by graphitization at 

temperatures of 2000oC~3000oC.  

 Figure 12.9 shows the P h−  loading/unloading hysteresis curves of 

the isotropic carbon/graphite materials heat-treated at three different 
[12.4] M. Sakai, Y. Nakano, S. Shimizu,  
   J. Am. Ceram. Soc., 86[6], 1522 (2002) 

(a)

(b)

100 μm

(c)

Figure 12.8 Scanning electron 

micrographs of the residual 

indentation impressions of GLC and 

SLG induced by a Vickers 

indentation (P=98.1N); (a) glassy 

carbon (GLC), (b) the in-surface 

ring/cone cracks of GLC, and  

(c) soda-lime glass (SLG) 
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temperatures. The carbon with HTT880 (Heat-Treatment-Temperature of 
880oC) has its P h−  hysteresis curve similar to that of brittle ceramic, 

while the P h−  hysteresis is progressively enhanced with the increase 
in HTT, resulting in highly significant loop energy rU , i.e., leading to 

significant amount of plastic energy dissipation in the loading/unloading 

processes. Since the HTTs exceeding 2000oC make highly developed 

graphite crystals, the very unique as well as the significant elastic 

recovery is observed in their indentation unloading paths due to the 

microscopic slippages along the hexagonal graphite basal planes. As 

actually demonstrated in Figs. 12.9 and 12.10, the residual depth of 
indentation impression ( )r r maxh hξ =  progressively reduces to zero 

with the increase in HTT; the carbon material with well-developed 

graphite structure leaves no residual indentation impression after 

complete unloading although the prominent P h−   hysteresis is 

observed in its indentation loading/unloading process. As shown in Fig. 
12.10, furthermore, the Meyer hardness MH   progressively decreases 

with HTT that is resulted from the enhanced plastic deformation 

associated with the development of graphite structures. 

 The well-defined residual indentation impression left behind on an 

ordinary elastoplastic body means that the dislocation-derived plastic 

flow is irreversible. In other words, the forwarded slip of dislocation in 

the indentation loading process is not fully recovered or only partially 

recovered in its unloading process, i.e., the slip of dislocation networks 

is always irreversible in the ordinary elastoplastic bodies. For the well-

graphitized carbons as demonstrated in Figs. 12.9 and 12.10, on the other 

hand, the slip of dislocation networks on graphitic basal planes is 

partially or fully reversible, resulting in the disappearance of residual 
impression, i.e., r 0ξ ↓  after complete unloading, though the significant 

plastic energy dissipation rU is observed in its loading/unloading process. 

It may be easy for us to understand this reversible dislocation slippages 

once we notice the van der Waals forces acting on graphite basal planes. 

In order to further appreciate these reversible dislocation slippages 

observed in the well-graphitized carbon material, its 2P h−  hysteresis 
curves observed in the sequential “loading → unloading → reloading” 

indentation processes are shown in Fig. 12.11 along with those of a 

silicon nitride ceramic for comparison. It is worthwhile noticing for the 

Figure 12.10 Normalized residual 

depth ( )r r maxh hξ =   and Meyer 

hardness MH  of the polycrystalline 

carbon and graphite materials plotted 

against the heat-treatment 

temperature (HTT)  
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Figure 12.9 P h−  loading/ 

unloading hysteresis curves of the 

isotropic carbons: their HTTs are 

880oC, 1550oC, and 2600oC, 
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silicon nitride ceramic that the reloading path coincides with its preceding 

unloading path, implying that the unloading and the subsequent loading 

behaviors is elastic, being a typical indentation unloading/reloading 

behavior of the ordinary elastoplastic materials. On the other hand, 

however, for the well graphitized carbon (HTT2300), there exists a well-

recognized as well as a very unique hysteresis loop along the unloading-

to-reloading paths. It must be also noticed that the significant concaving 

unloading 2P h−   path of the graphite material is very unique, by no 
means observed in the ordinary elastoplastic materials that have linear 

unloading 2P h−   paths like as that of the silicon nitride ceramic 
demonstrated in Fig. 12.11. These very unique indentation contact 

behaviors of well graphitized carbons are resulted from the reversible 

dislocation slippages along the basal planes of graphite crystals. 

 
(3) Viscoelastic indentation contact mechanics  
                                 of inorganic glasses [7.4] 
 The detailed considerations on the glass transition behavior, 

viscoelastic theories and the indentation contact mechanic of amorphous 

bodies have already been made in Chaps. 6 and 7.  In this section, the 

viscoelastic indentation contact mechanics at elevated temperatures will 

be given of the inorganic glasses including silica glass. 

 Silica glass (vitreous pure silica; SG) is a covalent-bonded amorphous 

material comprising three-dimensionally extended continuous random 

silica networks, resulting in rather open microstructures as inferred from 

its density (d=2.200 g/cm3) and molar volume (27.3 cm3/mol); the former 

is the smallest and the latter is the largest among other silicate glasses 

including soda-lime-silicate glass (SLG). The glass-transition 
temperature gT   of SG is extremely high ( gT  =1050oC). Three-

dimensionally extended silica networks can be modified by adding low-

molecular-weight oxides (the network modifiers) such as Na2O, CaO, and 

B2O3; these modifiers fragment the three-dimensional silica networks 

leading to densification of the microstructures and then 

controlling/designing the material characteristics. By way of example, 

SLG (so called soda-lime float glass or window glass) is manufactured 

by adding a given amount of Na2O, CaO, and MgO into SG. The glass-
transition temperature is gT =540 oC and the density is d=2.500 g/cm3; 
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Figure 12.11 2P h−   hysteresis 
curves (Vickers indentation)  

observed in the sequential  

“loading→unloading→reloading” 

indentation processes of the well- 

graphitized carbon (HTT2300) and 

of a silicon nitride ceramic 
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this significant decrease in gT   with an amount of about 500 oC is 

attained by adding these network modifiers to SG, resulting in very 

significant influences on its viscoelastic characteristics, the details of 

which will be given in what follows. 

 The softening curves of SLG and SG are shown in Fig. 12.12 measured 

by a Berkovich indenter made of sapphire, since it is incapable of using 

the conventional diamond indenter due to the oxidation in ambient air at 

temperatures exceeding 400 oC. The softening behavior is represented as 
the penetration depth ( )sh T    vs. the scanning temperature T  

relationship, in which a constant indentation load 0 0.98P = N is applied 

to the specimen at a temperature beneath the glass-transition point, and 

then the monotonically increasing penetration is measured that is 
associated with a constant-rate of rising temperature  ( T qt=  ;

5.0 C minq =  ). Due to the time/rate-dependent viscoelastic nature, the 
softening temperature sT   of glassy material is always affected by the 

scanning rate q , resulting in the lager sT  for the higher scanning rate 

of q  . The softening temperatures sT   for the scanning rate of 

5.0 C/minq =   demonstrated in Fig. 12.12 nearly coincide with the glass 
transition temperatures sT  of SLG and of SG, respectively. It is worthy 

of note in Fig. 12.12 that SLG exhibits a sharply rising penetration depth 

curve against the scanning temperature. In fact, the scanning temperature 

of about 60oC (corresponding to the scanning time of about 12min) is 

enough for SLG to result in the penetration of 60μm, while SG requires 
about 250oC (the scanning time of about 50min) to attain the same 

penetration depth. This significant difference in the softening behavior is 

directly resulted from their time/rate-dependent viscoelastic 

characteristics (i.e., relaxation-time spectrum, retardation-time spectrum; 

refer to APPENDIX D for the details) of these glasses having 

significantly different their three-dimensional silica network structures; 

the spatially fragmented rather small silica-network clusters of SLG and 

the spatially well-extended large clusters of SG. 

 Figure 12.13 shows the experimental results of SLG in the constant-

rate penetration test ( ( ) hh t k t= ⋅  ; 0.045hk =  μm/s), where the 

indentation load ( )P t   is plotted against the penetration depth ( )h t  .   

The plot of SLG at 570 oC combined with Eq. (11.17) leads to the stress 

 
Figure 12.13 Constant-rate of 

penetration test results of SLG 
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relaxation modulus ( )relax'E t  and the creep compliance function 

( )creep'C t  shown in Fig. 12.14 and in Fig. 12.15, respectively. Further- 

more in Fig. 12.16, the retardation time spectrum ( )L τ  of SLG derived 

from ( )creep'C t  is given in comparison to that of SG.  
As emphasized in Chap. 11, the accuracy and the reliability of these 

viscoelastic functions given in Figs. 12.14 to 12.16 are by no means 

satisfactory, since all of the experimental data are obtained on the 

conventional instrumented indentation apparatus that is incapable of 

measuring the indentation contact area.  The details of more 

accurate/reliable determination for the viscoelastic functions will be 

given in the subsequent section on the basis of the indentation contact 

area directly observed via the instrumented indentation microscope. 

 The detailed considerations on the concept, rheological meanings and 

the experimental determination of relaxation-time/retardation-time 

spectra are given in Appendix D. 

 

 
 
 
 
 
 
 
 
 

 
Figure 12.15 Creep compliance 
function of SLG at 570 oC. The 

dashed line is the numerical 

conversion from the relaxation 
modulus ( )relax'E t   shown in Fig. 

12.14 (refer to Eqs. (6.18) and (6.19))
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Figure 12.16 Retardation-time spectra of SLG and SG at the 

respective glass-transition temperatures; g 1050T =  oC: silica 

glass (SG), g 540T =  oC: soda-lime silicate glass (SLG) 
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(4) Instrumented indentation microscope applied to  
the viscoelastic studies of amorphous selenium (a-Se) [7.5] 

 In Chap. 11 briefly mentioned was the creep compliance of a-Se as an 

example for the application of instrumented indentation microscope to 

viscoelastic studies (refer to Fig. 11.14).  We will make a detailed 

consideration on the stress relaxation function of a-Se in this section. 

Selenium (Se) is a non-metallic element classified in the 16th group (the 

oxygen group; chalcogens) of the periodic table. Se forms a hexagonal or 

a monoclinic crystal as well as an amorphous state like as those of sulfur 

that belongs in the same periodic group. Amorphous selenium (a-Se) 

comprises entangled random chain networks resulting in viscoelastic 

behavior at temperatures (25oC~40oC) around its glass-transition point of 

g 30.0T = oC.   

 The instrumented indentation microscope is capable of not only 

measuring indentation load and penetration depth, but also 

programming/determining the in-situ indentation contact area as a 

function of time. By way of example, it is possible to measure the 

indentation load relaxation ( )P t  under a stepwise application of a fixed 

contact area of ( ) ( )0A t A u t= ⋅  ( ( )u t : Heaviside step function) to the 

test specimen, readily leading to the stress relaxation modulus ( )relax'E t  

by substituting the observed ( )P t  into Eq. (11.24). The stress relaxation 

moduli ( )relax'E t   of a-Se thus determined on the instrumented 

indentation microscope (Berkovich indentation) are plotted against time 

in Fig. 12.17 for various temperatures of measurement including the 

glass-transition point.  In the subsequent considerations, it will be 

demonstrated that the respective relaxation curves shown in Fig. 12.17 

satisfy the so-called “time-temperature superposition principle”.  

First of all in the procedure of time-temperature superposition, the 

relaxation curve is chosen at a specific temperature, i.e., at the standard 

temperature 0T , and then the other relaxation curves beside the standard 

relaxation curve at 0T   are shifted along the logarithmic time axis in 

order to superimpose to this standard curve for making a single master 

curve; the curves at temperatures exceeding the standard temperature are 

shifted to the longer-time region, and vice versa for the curves at the 

 
Figure 12.17 Stress relaxation 
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lower temperatures. Figure 12.18 shows the master curve thus obtained 

by applying this superposition procedure to the relaxation curves given 

in Fig. 12.7 (the standard temperature ( )0 g 30.0T T= =   oC)).  In Fig. 

12.18, the solid line is the master curve of a-Se obtained in the uniaxial 

compression test (the macro test) of a rectangle test specimen with the 

dimensions of 1 x 1 x 3 mm3 for comparison. As well recognized in Fig. 

12.8, the stress relaxation of the indentation test (the micro test) is more 

significant in the shorter time region of 0.1s 100st≤ ≤   than the 

relaxation of the macro test. This is resulted from the two-dimensional 

unconstrained molecular motions on the free surface beneath the indenter, 

whereas the stress relaxation proceeds with three-dimensionally 

constrained molecular motions in the macro test. The shift factor Ta  

utilized in the time-temperature superposition procedure (see Fig 12.18) 

is related to the shear viscosity η   through the relation of 

( ) ( )0Ta T Tη η=  ( ( )Tη : the viscosity at temperature T , ( )0Tη : the 

viscosity at the standard temperature). The temperature dependence of 

the shift factor Ta   utilized in Fig. 12.18 is shown in Fig. 12.19, 

indicating that the shift factor Ta   of a-Se is well described with the 

Arrhenius plot, ( )expTa A H T= Δ  . It is worthwhile noticing in Fig. 

12.19 that there exists a finite difference in the activation enthalpy HΔ  

at the temperatures bounded above/below the glass-transition point gT . 

This fact indicates that the rheological deformation/flow processes of the 

viscoelastic liquid ( gT T>  ) are somewhat different from those of the 

viscoelastic solid ( gT T< ). 
 
(5) Instrumented indentation microscope 

    applied to the viscoelastic/plastic studies of  
polycarbonate resin in the glassy state [12.5] 

 The glass-transition temperature gT  of polycarbonate resin (PCR) is 

about 145 oC, meaning that it is a glassy solid at room temperature, the 

mechanical characteristics of which are, therefore, time/rate- independent 

at room temperature in the conventional macro tests. Due to the 

unconstrained molecular motions at the free-surface of glassy solids 

including most of organic polymers as well as a-Se mentioned above, on 
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Figure 12.19 Arrhenius plot of the 
shift factor Ta  utilized in Fig. 11.18 

[12.5] C.G.N. Pelletier, J.M.J. Den Toonder, 
L.E. Govaert, N. Hakiri, and M. Sakai,  
Phil. Mag. 88[9], 1291 (2008)

 

Figure 12.18 Master curves of the 

stress relaxation modulus of a-Se at 

( )0 gT T=  =30.0 oC in terms of the 

shift factor Ta . The solid line is the 

relaxation master curve observed in 

the uniaxial compression test (macro 

test) 
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the other hand, their rheological characteristics are time/rate-dependent 

in the indentation contact tests (micro/nano tests) even at temperatures 

well below the glass-transition point.   

 The indentation loading/unloading hysteresis curve of PCR at room 

temperature is shown in Fig. 12.20; a spherical diamond indenter (tip-

radius 100μm) is penetrated with the rate of 1μm/s to the depth of 13μm 

(i.e., to the peak indentation load of 1.0N), and then held for 100s at this 

peak load followed by unloading with the rate of 1μm/s. As readily seen 

in Fig. 12.20, the well-defined load relaxation is observed during the 

holding time of 100s at the peak depth of penetration. This fact implies 

that PCR behaves as a viscoelastic solid in the indentation test (i.e., in the 

micro test) even at room temperature, whereas PCR is a glassy solid at 

room temperature. The dashed line in Fig. 12.20 indicates the elastic 

P  - h   analytical relation of the Hertzian contact, ( ) 3 24 3 'P E Rh=  

(refer to Eq. (3.18)); the purely elastic response dominates the initial stage 

of indentation loading, followed by the viscoelastic/plastic 

deformation/flow that becomes significant with the increase in the 

penetration. The indentation load relaxation and the associated creep of 

the contact area cA  proceeding at the fixed depth of ( )0 13h h= =  μm   

are plotted in Fig. 12.21 against the holding time. It is interesting to note 

that the contact area cA  monotonically increases with time under the 

fixed penetration depth. This fact indicates the viscoelastic creeping-up 

of the free-surface of PCR along the spherical indenter’s side-surface due 

to the time-dependent Poisson’s effect, the details of which have already 

been discussed in Sec. 10.4 through the FEA-based numerical results (see 

Fig. 10.14).  
 
(6) Instrumented indentation microscope applied to  

the elastoplastic studies of coating/substrate composite [12.6] 
 The elastoplastic indentation contact mechanics will be given in this 

section of the sol-gel-derived film/substrate laminates (methyl- 

silsesquioxian (MeSiO3/2) film coated on various types of engineering 

materials). In the conventional instrumented indentation testing for 

laminate composites, due to the incremental increase of the substrate-

effect with the increase in the indentation penetration, it has been well 

 
Figure 12.21 Indentation load 

relaxation and the associated creep of 

the contact area of polycarbonate 

resin observed at room temperature 

under the fixed penetration depth of 

0 13h = μm (the test result given in 

Fig. 12.20) 
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Figure 12.20 
 P-h loading/unloading hysteresis 

curve of polycarbonate resin under 

spherical indentation at room 

temperature. The dashed line is the 

analytical solution of Hertzian 
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known that there exist crucial difficulties not only in estimating the 

mechanical characteristics of the coating film and of the substrate 

respectively, but also in measuring the elastic modulus and the Meyer 

hardness of the composites as a function of the penetration depth (refer to 

the details in Chap. 9).  On the other hand, once we use the instrumented 

indentation microscope, we can determine in experiments the respective 

mechanical characteristics (elastic modulus, yield stress, viscoelastic 

functions, etc.) of the film and of the substrate in a precise manner (refer 

to Chaps. 9 and 10).  

 MeSiO3/2 films (elastic modulus; f' 3.9E =  GPa) with various 

thicknesses ( ft = 3 ~15μm) are coated on the five engineering substrates; 

poly carbonate resin PCR ( s'E =3.5GPa； s f' 'E E =0.95), polyacrylate 

resin PAR (4.5GPa；1.2) , polyphenol resin PPR (7.1GPa；1.9), glass-

like carbon GLC (28.7GPa；7.7), and soda-lime silicate glass SLG 

(80.5GPa；22). Using these laminate composites having a rather wide 

range of film/substrate modulus ratio s f0.95 ' ' 22E E≤ ≤  , let us 

examine the substrate-effect on the indentation contact mechanics. The 

indentation load P   vs. contact area A   hysteresis curves in the 

loading/unloading processes of Berkovich indentation are plotted in Fig. 

12.22 for MeSiO3/2/PCR and MeSiO3/2/SLG laminate composites by way 

of example. As clearly demonstrated in Fig. 11.13 for semi-infinite 

homogeneous bodies, the elastoplastic loading/unloading P  - A  rela- 

tions are both linear for cone/pyramid indentation; the slope of the 

loading linear line gives the Meyer hardness MH   and that of the 

unloading line, i.e., the unloading modulus M   provides the elastic 

modulus 'E  through the relation of ( )tan 2 'M Eβ= .  In contrast to 

semi-infinite homogeneous body, on the other hand, the loading/ 

unloading P - A  hysteresis relations of the laminate composites are not 

linear due to the substrate-effect, as shown in Fig. 12.22, where the P -

A  hysteresis of MeSiO3/2/PCR laminate is somewhat linear due to its 

film/substrate modulus ratio ( s f' ' 0.95E E =  ) being nearly 1.0, i.e., 

film/substrate modulus matching.  On the other hand, the nonlinear  

P  - A   hysteresis of the MeSiO3/2/SLG laminate composite is very 

 
Figure 12.22 Indentation load P  

vs. contact area A  hysteresis 

relations of MeSiO3/2/PCR and 

MeSiO3/2/SLG laminate composites 

in the multi-step loading/unloading 

cycle tests (Berkovich indentation). 

The dashed line is the  P  - A  

loading linear relation of the semi-

infinite homogeneous MeSiO3/2 
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significant that is resulted from the modulus mismatching 

( s f' ' 22E E =  ).  The slope of the  P  - A   loading path of 

MeSiO3/2/PCR laminate slightly decreases with the increase in the 

indentation penetration due to the little bit lower modulus of the substrate, 

i.e., s f' ' 0.95E E =  . On the other hand, for MeSiO3/2/SLG laminate, 

reflecting its larger modulus mismatching ( s f' ' 1E E  ), the slope of the 

P  - A   loading line progressively and significantly increases with 

penetration, approaching to the slope of semi-infinite homogeneous SLG. 
 Based on the detailed considerations made in Sec. 11.3 for the 

instrumented indentation microscope, we can make the quantitative 

assessment of the elastoplastic characteristics of laminate composites. As 

mentioned above, the P - A  relation of laminate composite is not linear 

due to the substrate-effect, whereas it is possible for us to estimate the 
Meyer hardness ( )MH A   from the tangential slope of the P  - A  

loading line at a given value of the contact area A : 
 M ( )H A dP dA=  (12.1) 

In other words, due to the substrate-effect, the Meyer hardness of 

laminate composite is dependent on the contact area A  : the Meyer 

hardness is approaching to the value of the coating film by extrapolating 

0A ↓ , and to the value of the substrate in the extreme of A ↑ ∞ .  On 

the other hand, as shown in Fig. 12.22, the unloading modulus 

( ) ( )( )M A dP dA≡  (the initial slope of the unloading curve at the peak 

indentation load for the respective multi-step loading/unloading cycles) 

combined with the following relation (see Eq. (11.18)) 
 '( ) 2 cot ( )E A M Aβ= ⋅  (12.2) 

gives the elastic modulus '( )E A  of the laminate at a given value of the 

contact area A . Like as the Meyer hardness, the elastic modulus '( )E A  

approaches to f'E   for 0A ↓  , and is extrapolated to s'E   with 

A ↑ ∞ . We can also determine the yield stress ( )Y A  of the laminate by 

substituting the values of ( )MH A  and ( )M A  thus determined in the 

above procedures into Eq. (11.19).  
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The Meyer hardness ( )M fH a t   and the effective elastic modulus  

( )eff f'E a t  of the MeSiO3/2-coated laminates are plotted in Figs. 12.23 

and 12.24, respectively, against the normalized contact radius fa t  . 

Notice that the interrelation between ( )'E A   and ( )eff'E A   has 

already been given in Sec. 9.3 with Eq. (9.19). 
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Figure 12.23 Meyer hardness is plotted 
against the normalized contact radius fa t  of 

the MeSiO3/2-coated laminate composites 

determined on the indentation microscope. The 

symbols from the top to the bottom indicate the 

materials used for the respective substrates; 

  ●: soda-lime silicate glass (SLG)  

  △ : glass-like carbon (GLC) 

  ■: polyphenol resin (PPR) 

  ▽ : polyacrylate resin (PAR) 

  ◆ : polycarbonate resin (PCR) 

Figure 12.24 Normalized effective modulus 

( )eff f f' 'E a t E vs. normalized contact radius 

( )f1 a t   relations of the MeSiO3/2- coated 

laminate composites (refer to Fig. 12.23 for the 

respective symbols) determined on the 

indentation microscope. The solid lines are the 

numerical solution of the Fredholm integral 

equation given in Eq. (9.11) 
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(7) Instrumented indentation microscope applied to  
the soft matters with surface adhesion  

The technology of cell culture media has been advancing in these few 

decades. It is critically essential in the studies of cell culture to find a 

good medium, since the optimized mechanical characteristics of the gel-

medium such as the contact hardness, elastic modulus and the surface 

adhesion (surface energy) play essentially important roles in the studies 

of stem cell such as the induced pluripotent stem cell (iPS cell).  

 

(i) Elastoplastic indentation contact characteristics of aloe-gel 
  The contact test results of an aloe-gel as a model bio medium are 

given in this section through utilizing the indentation microscope for 
determining the adhesive surface energy γ   along with the 

elastoplastic characteristics of 'E  and Y ). 

An example of the P - A  loading-unloading hysteresis (Berkovich 

indentation) is shown in Fig. 12.25. In general, both the P - A  loading 

and the unloading relations of cone/pyramid indentation are linear as well 

demonstrated in Fig. 11.13 for elastoplastic bodies without surface 
adhesion. However, as readily seen in Fig. 12.25, the surface adhesion of 

the tested aloe-gel leads to a significant nonlinear P  - A   hysteresis. 

Furthermore, it must be noticed the fact that the observed indentation 

load always turns to negative, implying that the tip-of-indenter is pulled 

to the contact surface due to surface adhesion (refer to Eq. (8.29) in Chap. 

8 for the modified JKR-theory); 

 3 4
M EPP H A Aλ= −  (8.29) 

The non-linear P - A  loading relation shown in Fig. 12.25, therefore,  

stems from the elastoplastic adhesion toughness EPλ . The linear P  vs. 

A  loading line, i.e., MP H A=  of the aloe-gel is plotted in Fig. 12.26 

that is derived by applying Eq. (8.29) to the observed P - A  non-linear 

loading line in Fig. 12.25 and then making the numerical correction for 

the non-linear adhesion term, 3 4
EP Aλ . The Meyer hardness MH  and 

the adhesion toughness as well as the surface energy γ   can thus be 

successfully determined in experiments through these linearization 

procedures. 

  One can determine in experiments the elastic modulus 

 
Figure 12.25 P  - A   loading-

unloading hysteresis (Berkovich 

indentation) of aloe-gel. The 

indentation load is always 
negative ( 0P < ) due to surface 

adhesion 
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Figure 12.26 P   - A   loading 

relations of aloe-gel (Berkovich 

indentation). The closed symbols 

( ● ) and the dashed curve 

indicate the experimental 

observation obtained on the 

indentation microscope. The 

open symbols (◯) and the solid 

linear line stand for the relation 

with the JKR-correction for the 

adhesion toughness λ ;  
3 4
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( )' tan 2E Mβ=    in a quantitative manner via the unloading modulus 

M   as the slope of unloading linear P  - A   line (refer to Fig. 11.13) 

whenever the surface adhesion of the specimen is negligibly small 

enough. However, as shown in Fig. 12.25, the surface adhesion not only 

leads to the nonlinear loading P - A  relation, but also results in a very 

steep unloading slope that leads to a significant overestimate of the 

modulus M , yielding the fatal error in determining the elastic modulus 

'E .  As a matter of fact, the unloading modulus estimated from the M

-value turns to infinity when the surface adhesion of the specimen tested 

is large enough, since the tip-of-indenter sticks to the contact surface and 

the contact area A   keeps its maximum value maxA A≡   during 

unloading. In such a specific unloading contact process proceeding with 

a constant contact area, the unloading stiffness S   defined by the 

unloading slope of the indentation load P  vs. the penetration depth h  

is quantitatively related to the elastic modulus 'E  as follows (refer to 

Chap. 11 and Eq. (11.3)) for the axisymmetric indenter with any geometry 

including flat-ended cylinder, sphere, cone/pyramid, etc.; 
  

 
max

'
2

E S
A
π=   (12.3) 

  The P  - h   loading/unloading hysteresis of the aloe-gel is shown in 

Fig. 12.27, indicating the unloading stiffness S  as the initial slope of 

the unloading path. Since one can measure the contact area maxA  , 

penetration depth h   as well as the unloading stiffness S   through 

utilizing the instrumented indentation microscope, the application of 

these experimental data to Eqs. (8.29) and (12.3) yields the Meyer 

hardness MH , elastic modulus 'E , yield stress Y  (refer to the details 

of the additivity principle of the excluded volume of indentation given in 

Chap. 5) as well as the adhesive surface energy γ  of the test specimen, 

i.e., aloe-gel; 

  Elastic modulus  'E =25.5kPa 

  Meyer hardness   MH =2.40kPa 

  Yield stress   Y =1.25kPa 

  Adhesive surface energy γ =15.6mJ/m2 

 
 

Figure12.27 
Loading /unloading P  - h

hysteresis of aloe-gel (Berkovich 

indentation). The unloading 
stiffness S  combined with Eq. 

(12.3) yields the elastic modulus 

'E  
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(ii) Viscoelastic indentation contact characteristics of  
polyurethane-gel 

The creep test results (spherical indentation) on the instrumented 

indentation microscope are given in this section of a commercially 

available sticky polyurethane gel mat that is to be utilized as vibration 

dumping mediums.  

The creeping contact radius ( )3
0a t  of a spherical indenter combined 

with Eq. (8.46) in Chap.8 is capable of determining in experiment not 

only the creep function ( )'C t  but also the surface energy γ  (and/or 

the adhesive surface force Γ  ) ; these material characteristics can be 

obtained by solving the simultaneous equations of ( )3
0a t  and ( )3

1a t  

in Eq. (8.46) for the stepwise indentation loads of 0P   and of 1P  , 

respectively.  An example of the creep curve ( )0a t   under the 

indentation load 0 0.11P = mN of the spherical indenter (tip-radius, 

3R = mm) is shown in Fig. 12.28 with the indentation contact images in 

time.  Figure 12.29 shows the creep curves of ( )3
0a t  and ( )3

1a t  for 

0 0.11P = mN and 1 0.05P = mN, respectively. It must be noticed in Fig. 

12.29 that the ( )3a t -creep curve is not linearly proportional to the  

 

Figure 12.29  Creep curves of the contact 

radius ( )3a t  of polyurethane-gel for stepwise 

loading of 0P  =0.11mN and 1P   =0.050mN 

(spherical indentation with the tip-radius of 

3R =  mm) 
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Figure 12.28   Creep curve of the contact radius 

( )a t   of polyurethane-gel for stepwise loading

（ 0 0.11P = mN）(spherical indentation with the tip-

radius of 3R =   mm). The contact images at the 

respective creeping times of t =  0, 200, 400, and 

600s are shown on top of the graph 
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applied load due to the significant effect of surface adhesion on the creep 

deformation, the details of which have already been discussed in Chap. 8.  

In this creep test, a significant increase in the contact radius ( )0a t ≈  

is observed even right after the tip-of-indenter contacts to the specimen’s 

surface and just before the load is applied to the indenter ( 0P ≈ ). This 

observation confirms that the adhesion force of the polyurethane gel mat 

plays an essential role in its creeping behavior.   

The creep function ( )'C t  thus obtained by applying Eq. (8.46) to the 

observed creep curves shown in Fig. 12.29 is plotted in Fig. 12.30 along 

with the relaxation modulus ( )'E t  in Fig, 12.31 that is converted from 

( )'C t  through Laplace transform and its inversion (refer to Eqs. (6.18) 

and (6.19) in Chap. 6 for the details). Once we determine the creep 

function ( )'C t  in the preceding procedures, by applying it to Eq. (8.46), 

we successfully estimate the surface energy (adhesive energy) of the 

polyurethane gel mat as γ =6.61mN/m (=6.61mJ/m2). 
 

 
  

 
Figure 12.30 Creep function ( )'C t   of 

polyurethane-gel 

 (the temperature of measurement: 26.5℃) 
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Figure 12.31 Relaxation modulus ( )'E t

converted from the creep function ( )'C t  

shown in Fig. 12.30 through Laplace 

transform and its inversion (the temperature of 

measurement: 26.5℃) 
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KINEMATIC EQUATIONS 
                  IN CYLINDRICAL COOEDINATE 
 
(1) Displacement and Strain 
 Suppose a point A is displaced to the point A’ in a continuum body by 
stretching and torsion, as shown in Fig. A1. This displacement ( , )u v  in 

the Cartesian coordinate is related to that in the cylindrical coordinate

θ( , )ru u ;  

 θ

θ

θ θ
θ θ

= −
= +

cos sin

sin cos
r

r

u u u

v u u
   (A1) 

On the other hand, there exist the following interrelations between the 

Cartesian and the cylindrical coordinates;  

 θ θ
θ

= +
= =

=

2 2 2

cos sin

tan

r x y

x r y r

y x

   (A2) 

Substituting Eq. (A1) into Eqs. (1.2) ~ (1.5), the strains in the Cartesian 

coordinate, εx  , εy  , εz  , γ xy  , γyz  , and γ zx   can be described in 

terms of ru  , θu  , and θ   through the following mathematical 

operations. 
 For the normal strain in the x-direction, as an example, is represented 

by 

 θε
θ

∂ ∂ ∂ ∂ ∂= = +
∂ ∂ ∂ ∂ ∂x
u u u r

x x r x
   (A3) 

Furthermore, Eq. (A1) combined with Eq. (A2) gives the following 

expressions; 

θ
θ

θ

θ θ θ θ
θ θ θ

θ θ

θ θ

θ

∂∂∂ = − − −
∂ ∂ ∂

∂∂∂ = −
∂ ∂ ∂
∂ = −
∂
∂ =
∂

cos sin sin cos

cos sin

sin

cos

r
r

r

uuu
u u

uuu

r r r

x r
r

x

  (A4) 

Substituting Eq. (A4) into Eq. (A3), therefore, we finally have  

xθ

r

y

r u

ruuθ

A'

A
●

●

θ

v

Figure A1 Displacement of a point A 

to the point A’ in a continuum body 

by stretching/torsion in Cartesian 
( ),x y   and cylindrical ( ),r θ  

coordinates 
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θ
θ

θ

θε θ θ θ θ
θ θ

θ θ θ

 ∂∂
= − − − −  ∂ ∂ 

 ∂∂
+ −  ∂ ∂ 

sin
cos sin sin cos

cos sin cos

r
x r

r

uu
u u

r
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r r

 

      (A5) 
Once we notice ε ε→x r  as θ → 0  in Fig. A1, we obtain 

 ( )θ
ε ε

→

∂
= =

∂0
r

r x

u

r
   (A6) 

via 0θ →  in Eq. (A5). Analogously, noticing θε ε→x  asθ π→ 2 , 

we have  

 θ
θ θ π

ε ε
θ→

∂ = = +  ∂ 2
1 r

x

u u

r r
  (A7) 

  After applying a similar procedure conducted above to the shear 

strain ( )γ = ∂ ∂ + ∂ ∂xy u y v x  in the xy -plane (see Eq. (1.3)), we 

have the following expression; 

 

θ
θ

θ

θ
θ

θ

θγ θ θ θ θ
θ θ

θ θ θ

θθ θ θ θ
θ θ

θ θ θ
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      (A8) 

and then noticing θγ γ→xy r  as θ → 0 , Eq. (A8）leads to

 ( ) θ θ
θ θ

γ γ
θ→

∂ ∂
≡ = + −

∂ ∂0

1 r
r xy

u uu

r r r
  (A9) 

that has already been given in Chap. 1 (Eq. (1.9)). 

  The expressions given in Eqs. (A6), (A7), and (A9) for the strains in 

the cylindrical coordinate are derived from the strains in the Cartesian 
coordinate by the use of coordinate-conversion from the ( , )x y -space to 

the θ( , )r  -space (Eqs. (A1) and (A2)), in mathematical manner, not 

derived from the actual displacements and deformations of continuum 
body. In order to make clear the physics of these strains of εr , θε , and 

162



θγr  associated with the deformation of continuum body, therefore, let us 

derive again these strains εr  , θε  , and θγr   through using the 

displacements/deformations depicted in Figs. A2 ~ A5. 

 The normal deformations are depicted in Figs. A2 and A3; the 

quadrangle abcd in Fig. A2 is deformed to the quadrangle a’b’c’d’ 

through the normal displacement ru   from bc (length dr  ) to b’c’ 

(length δr ) along the radial direction, and from ab (length θrd ) to a’b’ 

(length ( ) θ+ rr u d  ) along the azimuthal direction. Accordingly, the 

radial strain εr  is given by  

 
( )δ

ε
∂ ∂ ∂

= = =
∂

rr r
r

u r dr u

dr dr r
  (A6) 

and the azimuthal strain θε 1  is described by 

 
( )

θ

θ θ
ε

θ
+ −

= =1
r r

r u d rd u

rd r
  (A10) 

that is associated with the radial displacement of ru . In addition to the 

azimuthal strain θε 1  induced by ru , there also exists the strain θε 2  

induced by the azimuthal displacement of θu  as shown in Fig. A3; 

 
( )θ θ

θ

θ θ
ε

θ θ

∂ ∂ ∂
= =

∂2
1u d u

rd r
   (A11) 

The azimuthal strain θε  is, therefore, given by the sum of θε 1  and 

θε 2 , as follows; 

 ( ) θ
θ θ θε ε ε

θ
∂

= + = +
∂1 2
1 ru u

r r
  (A7) 

 The shear deformations are depicted in Figs. A4 and A5; the 

quadrangle abcd in Fig. A4 is deformed to the quadrangle a’bcd’ through 
the shear displacement rdu   along the radial direction, and the same 

quadrangle abcd in Fig. A5 to the quadrangle a’b’c’d’ through the shear 
displacement uθ  along the azimuthal direction. As shown in Fig. A4, 

the shear strain γ r   associated with the displacement rdu   along the 

radial direction is given by 

 1 r
r

u
r

γ
θ

∂ =  ∂ 
,    (A12) 

On the other hand, as shown in Fig. A5, the shear strain θγ  through the 

azimuthal displacement uθ  is described with 
Figure A3 Normal deformation of 

the quadrangle abcd to the 

quadrangle a’b’c’d’ through the 
azimuthal displacement uθ  

Figure A2 Normal deformation of 

the quadrangle abcd to the 

quadrangle a’b’c’d’ through the 
radial displacement ru  
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 θ θ
θγ β α

∂
= − = −

∂
u u

r r
   (A13) 

where β  indicates the relative shear angle between the lines cd and ab 

of the quadrangle abcd that is induced by the azimuthal displacement uθ , 

while α  is the angle of rigid rotation of the quadrangle abcd associated 
with the azimuthal displacement uθ , leading to the resultant shear angle 

( )θγ β α≡ −  as given in Eq. (A13).  Accordingly, the total shear strain 

θγr  in the θ( , )r -plane associated with the displacements along ther - 

and θ - directions is finally given by  

 θ θ
θ θγ γ γ

θ
∂∂

= + = + −
∂ ∂
1 r

r r

u uu

r r r
  (A9) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A4 Shear deformation of the 
quadrangle abcd (the solid lines) to 

the quadrangle a’bcd’ (the broken 

lines) associated with the radial 
displacement rdu  

 
Figure A5 Shear deformation of the 
quadrangle abcd (the solid lines) to 

the quadrangle a’b’c’d’ (the broken 

lines) associated with the azimuthal 
displacement uθ  
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(2) Equilibrium Equations 
 The mechanical equilibrium shown in Fig. A6 along the radial 

direction results in 

( )

θ
θ θ

θ
θ θ

σ
σ θ σ θ

σ θ θσ θ σ
θ

τ θ θτ θ τ
θ

θ

  ∂
+ + −   ∂   
  ∂

− + +   ∂   
  ∂

+ + −   ∂   
+ =

sin sin
2 2

cos cos
2 2

0

r
r r

r
r r

dr r dr d rd
r

d d
d dr dr

d d
d dr dr

Rrd dr

 (A14) 

and then,  

 θ θσ σ τσ τ
θ

− ∂∂ ∂
+ + + + =

∂ ∂ ∂
1

0r rr zr R
r r r z

  (A15) 

by noticing 1dθ  , ( )sin 2 2d dθ θ≈ , ( )cos 2 1dθ ≈ , and by letting 

the higher-order variables ( ( )2dr , drdθ ) to be negligible, although the 

shear stress zrτ  on the z-plane (the plane with its normal vector directed 

to z-axis) is not depicted in Fig. A6 for simplicity (Eq. (A15) has already 

been given in Chap. 1 (see Eq. (1.11)). 
 The equilibrium equation for azimuthal direction (θ -direction) is also 

given by 

( )

θ
θ θ

θ
θ θ

θ
θ θ

σ θσ θ σ
θ

τ
τ θ θ τ θ

τ θτ θ τ
θ

θ

  ∂
+ −   ∂   
  ∂

+ + + −   ∂   
  ∂

+ + +   ∂   
+Θ =

cos
2

sin
2

0

r
r r

r
r r

d dr dr

d r dr d rd
r

d
d dr dr

rd dr

 (A16) 

After a similar consideration we made above on the radial direction, we 

finally have the following equilibrium equation for azimuthal direction;   

 θ θ θ θτ τ σ τ
θ

∂ ∂ ∂
+ + + + Θ =

∂ ∂ ∂
2 1

0r r z

r r r z
  (A17) 

through taking into account of 1dθ   , ( )sin 2 2d dθ θ≈  , 

( )cos 2 1dθ ≈ , the contribution of shear stress zθτ  on the z-plane, as 

Figure A6 Stress components (σr  ,

θσ  , θτ r  , θτr  ) acting on the 

infinitesimal quadrangle abcd with 

unit thickness under the external 

body forces (R , Θ ) 
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well as the symmetric nature of the stress tensor, r rθ θτ τ= .  Equation 

(A17) has already been given in Chap. 1 (see Eq. (1.11))  
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BESSEL FUNCTION 
 Daniel Bernoulli first introduced the concept of Bessel functions in 

1732 to solve the problem of an oscillating chain suspended at one end, 

although Bessel functions are named for Friedrich W. Bessel (1784-1846). 

In 1824, F.W. Bessel incorporated Bessel functions in the Kepler’s 

perturbation problems for determining the motion of three planets 

moving under mutual gravitation. In 1878, Lord Rayleigh (John W. 

Strutt) employed Bessel functions in the analysis of a membrane 

stretched within a cylinder, that has been the historical origin of the 

application of Bessel functions to solving the bi-harmonic equation 

through Hankel transformation as demonstrated in Chap. 2 of this 

textbook. 

 Bessel equation (see Eq. (2.22)) is defined by the second order 

differential equation given as 

 
2 2

2 2
1 1 0d y y n y

dx x dx x
 

+ + − = 
 

   (B1) 

The solution of Eq. (B1) is described in terms of Bessel functions of the 
first and the second kind, ( )nJ x   and ( )nY x   of the n-th order, as 

follows;  
 ( ) ( )n ny AJ x BY x= +    (B2) 

with arbitrary integral constant A  and B  . The second kind Bessel 
function ( )nY x  is sometimes referred to as the Weber function or the 

Neumann function, and related to the first kind Bessel function in the 

following formula; 

 ( )cos( ) ( )( )
sin( )

n n
n

J x nx J xY x
nx

−−
=   (B3) 

The function ( )nJ x   is always finite for all values of n  , while the 

function ( )nY x   becomes singular, i.e., becomes infinite at 0x =  , as 

readily seen in Eq. (B3). In order to describe the problems of 

physics/mechanics, therefore, we need to set the integral constant B  as 

0B =  in Eq. (B2). In other words, only the first kind Bessel function 
( )nJ x  is essential in analyzing any of physical/mechanical phenomena 

and problems without singularity. 

 The Bessel function of the first kind of order n can be determined using 

an infinite power series expansion as follows; 
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 ( ) 2

0

( 1) 2
( )

!( )!

n kk

n
k

x
J x

k n k

+∞

=

−
=

+    (B4) 

Equation (B4) leads to the following recurrence formulas, i.e., Bessel 

functions of higher order are expressed by Bessel function of lower order 

for all real values of n;  

 
1

1

( ) ( )

( ) ( )

n n
n n

n n
n n

d x J x x J x
dx
d x J x x J x
dx

−

− −
+

  = 

  = − 

  (B5) 

The equivalent alternatives of Eq. (B5) are 

 
[ ]

1 1

1
1 1

2( ) ( ) ( )

( ) 1 ( ) ( )
2

n n n

n
n n

nJ x J x J x
x

dJ x J x J x
dx

+ −

+
− +

= −

= −
  (B6) 

or 

 
1

1

( ) ( ) ( )

( ) ( ) ( )

n
n n

n
n n

dJ x nJ x J x
dx x

dJ x n J x J x
dx x

−

+

= −

= −
   (B7) 

Using these recurrence formulas, it will be easy to prove that the first-

order Hankel transform of the derivative /d drϕ  , i.e., 

( ) ( )10
/r d dr J r drϕ ξ

∞

  , is expressible in terms of the zeroth-order 

Hankel transform ( )00
r J r drϕ ξ

∞
  of the function ϕ , as follows 

  ( ) ( )1 00 0
/ ( )r d dr J r dr r J r drϕ ξ ξ ϕ ξ

∞ ∞
= −   

This formula has already been utilized in Chap. 2 for describing the 

displacements, ru  and zu , in cylindrical coordinate. As emphasized in 

Chapt.2, Hankel transform plays an important role in solving the 

harmonic/bi-harmonic equations in cylindrical coordinate.   
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LAPLACE TRANSFORMS 
 The Laplace transform, like the Fourier series, give us a method of 

tackling differential/integral equation problems we couldn’t otherwise 

solve. In the linear response theory such as the linear viscoelastic theory, 

the Laplace transform is a very powerful tool that enables us to solve 

complicated viscoelastic problems, as demonstrated in Chap. 6.  

 Linear differential/integral equations in real space are transformed to 

the algebraic equations in Laplace space, and then the solutions of these 

algebraic equations are inversely transformed to the real space resulting 

in the solutions of these original differential/integral equations. 

 

(1) Definition of Laplace Transform 
 An arbitrary function ( )f t    with the variable t   in real space is 

transformed to ( )f p   with the variable p   in Laplace space through 

using the Laplace operator L  as follows; 

    
0

( ) ( ) ( ) ptf t f p f t e dt
∞ −= = L     (C1) 

The variable p  in Laplace space has the inverse physical dimension of 

the variable t   in real space; p   has its physical dimension of [1/s], 

provided that t   is referred to as time [s]. The variable pt   in the 

integrand in Eq. (C1) is therefore dimensionless. 

 

(2) Fundamental Properties 
 The most fundamental properties of Laplace transform are listed 

below;  

    (i)   ( ) ( ) ( ) ( )1 1 2 2 1 1 2 2c f t c f t c f p c f p+ = +  L  (C2) 

         where 1c  and 2c  are constant 

    (ii)  ( ) ( )( ) 0df t pf p f
dt

−  = −  
L  (C3) 

            with ( ) ( )
0

0 lim 0f f
ε

ε−

→
= −  

  ( ) ( ) ( )2
2

2
( ) 0

0

df td f t p f p pf
dt dt t

− 
= − −  −  =

L  (C4) 

 (iii) ( ) ( ) ( ) ( )
0

' ' '
t

f t t g t dt f p g p − = ⋅  L  (C5) 
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          in which the integral ( ) ( )
0

' ' '
t

f t t g t dt−  is the  

  so-called convolution integral; the Boltzmann’s hereditary 

  integral (Eqs. (6.15) and (6.20) in Chap. 6.3) typifies the 

  convolution integral.  
 
(3) Some Useful Transform Pairs 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(4) An Example of the Application of Laplace Transform  
                            to Linear Differential Equation 
 Let us solve the following linear differential equation (see Eq. (6.1)) as 

an example: 

  ( ) ( ) ( ) ( )
0 1 0 1

d t d t
a t a b t b

dt dt
ε σ

ε σ+ = +  (C6) 

Laplace transform of Eq. (C6) results in the following algebraic equation; 

Table C1 Laplace Transform Pairs useful in The Linear Response Theory 

 ( )f t  ( )f p  

1 ( )u t a− ; Heaviside step function ape p−  

2 ( )( )( )t du t dtδ ≡ ; Dirac function 1 

3 1 1 p  

4 nt ; 1,2,3n = ⋅ ⋅ ⋅  1! nn p +  

5 ate  ( )1 p a−  

6 ( ) ( )bt ate e b a− − ; a b≠  ( )( )1 p a p b− −    

7 ( ) ( )bt atbe ae b a− − ; a b≠  ( )( )p p a p b− −    

8 sin at  ( )2 2a p a+  

9 cos at  ( )2 2p p a+  

10 ( )0J at ; zeroth-order Bessel function 2 21 p a+  
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( ) ( ) ( )

( ) ( ) ( )
0 1

0 1

0

0

a p a p p

b p b p p

ε ε ε

σ σ σ

−

−

 + − 
 = + − 

 (C7) 

Since none of external loads and displacements are applied to the body in 

the past ( 0t <  ), Eq. (C7) with the initial condition of 

( ) ( )0 0 0ε σ− −= =   leads to the following algebraic equation in the 

Laplace space; 

 
( ) ( ) ( )

( ) 0 1

0 1

*

*

p E p p
a a pE p
b b p

σ ε=
+

=
+

 (C8) 

In Eq. (C8), ( )*E p  stands for the pseudo elastic modulus (refer to Eq. 

(6.4)), and the constants 0a  , 1a  , 0b  , and 1b   are related to the 

viscoelastic characteristics such as the elastic modulus, viscosity and the 

relaxation time (see Eqs. (6.2a) ~ (6.2c)) of the viscoelastic model 

(Maxwell/Zener models; refer to Eqs. (6.5a) ~ (6.5c)). 
 Suppose a step-wise strain ( ) 0 ( )t u tε ε=  in Eq. (C6), and then notice 

its Laplace transform 0( )p pε ε=   via Table C1#1. Equation (C8) is 

therefore rewritten by 

 ( )
01

0 0 1 0 1

( ) aap
b b p p b b p

σ
ε

= +
+ +

 (C9) 

The inverse Laplace transform of Eq. (C9) via Table C1 finally results in 

the solution of the linear differential equation (Eq. (C6)) as follows; 

 

( ) 0 01

0 0 1 0

1

0

exp
t a aa t

b b b
b
b

σ
ε τ

τ

   = + − −   
  

=
 (C10) 

Equations (6.2a) ~ (6.2c) applied to the constants 0a , 1a , 0b , and 1b

in Eq. (C10), therefore, finally give the constitutive expressions for the 

stress relaxation behaviors of the respective viscoelastic models we 

discussed in Chap. 6. 
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RELAXATION TIME SPECTRUM AND  
                 RETARDATION TIME SPECTRUM 
 It is incapable of quantitatively describing the viscoelastic behaviors 

of engineering materials in terms of a simple viscoelastic model like as 

the Maxwell/Zener model discussed in Chaps. 6 and 7. We need, 

therefore, to adopt a more general viscoelastic model such as the 

Wiechert model (see Fig. 6.5 in Chap. 6) with multiple relaxation time 

through introducing the concept of “time spectrum” to the constitutive 

equations, Eqs. (6.8) ~ (6.13) in Chap. 6, for expressing the relaxation 

modulus and the creep compliance [A1].  

 The Wiechert model (refer to Chap. 6) well describes the generalized 
relaxation modulus ( )relaxE t   in terms of a discrete distribution of 

relaxation times; 

 ( )relax e
it

i
i

E t E E e τ−= + , (6.13) 

while its corresponding expression with a continuous time distribution is 

given by 

 ( ) ( )relax e 0

tE t E M e dττ τ
∞ −= +   (D1) 

in Eq. (D1), the function ( )M τ  is referred to as the “relaxation time 

distribution” that stands for the elastic modulus ( )i i iE η τ≡   with the 

relaxation time iτ  in the discrete model (Eq. (6.13)).  The distribution 
function ( )M τ  is a kind of the memory function having the physical 

dimension of [Pa/s], being not the dimension of elastic modulus [Pa], 
though the function ( )M τ  in its physical meaning stands for the elastic 

modulus itself.  To circumvent such a confusing physical meaning, Eq. 

(D1) is rewritten to 

 ( ) ( )relax e lntE t E H e dττ τ
∞ −

−∞
= +   (D2) 

by introducing the relaxation time spectrum ( ) ( )H Mτ τ τ≡    with the 

physical dimension of [Pa]. By the use of the relaxation time spectrum 

( )H τ  instead of using the time distribution ( )M τ , we can, therefore, 

successfully express the elastic modulus of the springs having their 

relaxation times ranging from lnτ  to ln lndτ τ+ . 
 In a similar manner to the relaxation modulus, we can describe the 

creep compliance as follows,  
[A1] J.D. Ferry, Viscoelastic Properties of  
     Polymers, 3rd Ed. Wiley (1980) 
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    ( ) ( )/
creep g( ) 1 ( ) ln

2 1
ttC t C e L dτ τ τ

ν η
+∞ −
−∞

= + + −
+   (D3) 

in terms of the retardation time spectrum ( )τL  for the springs having 

the retardation times ranging from lnτ  to ln lndτ τ+ .  In Eq. (D3), 

gC   is the glass compliance, and η   is the steady-state viscosity. The 

relaxation modulus ( )relaxE t   is related to the creep compliance 

creep ( )C t  via the convolution integral (refer to Chap. 6);  

 ( ) ( )relax creep0
' ' '

t
E t t C t dt t− =      (6.19) 

In this context, therefore, the relaxation time spectrum ( )H τ   is 

correlated to the retardation time spectrum ( )τL  as follows [A2-A4];  
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( ) ( )

( ) ( )
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2
2

g 0

2
2
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1
1

1
1

H
L

H s
H E ds

s

L
H

L s
L C ds

s

τ
τ

π τ
τ

τ
τ

τπ τ
η τ

∞

∞

=
 

+ −     − 

=
 

+ + +     − 





   (D4)  

 The retardation time spectra ( )τL  in Fig. 12.16 are determined via 

the Schwarzl-Staverman approximation [A3-A4] 

 
( )

2
creep creep

2
2

( ) ( )
( )

ln ln
t

dC t d C t
L

d t d t
τ

τ
=

 
 = −
  

 (D5) 

applied to the experimental data of creep compliance curves creep ( )C t  in 

Fig. 12.15. In a similar way, the relaxation time spectrum ( )H τ  is also 

determined from the experimentally observed relaxation modulus 
( )relaxE t  by the use of the following relation; 

 
( )

2
relax relax

2
2

( ) ( )( )
ln ln

t

dE t d E tH
d t d t

τ

τ
=

 
 = − +
  

 (D6) 

 
  

[A2] B. Gross, Mathematical Structure  
     of the Theories of Viscoelasticity,  

    Hermann (1953) 

[A3] F. Schwarzl, A.J. Staverman, 
   Physica, 18, 791 (1952) 
[A4] F. Schwarzl, A.J. Staverman,  
  Appl. Sci. Res., A4, 127 (1953) 
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HYSTORY OF INDENTATION CONTACT MECHANICS 
 
(1) Thermodynamics and Continuum Mechanics  
                       in The Era of Industrial Revolution 
 In the early 19th century in Great Britain, the industrial revolution 

began in earnest with the technological innovations associated with 

textile industry, development of steam locomotives/ships, etc., followed 

by the development of iron/steel industry with the engineering innovation 

of coal-to-coke producing processes. The transportation of coal in South 

Wales to Glasgow/Manchester, the center of the industrial revolution, 

significantly improved Britain’s transport infrastructure with railway 

networks, canal/waterway networks, etc. 

 It was the historical necessities in the era of the industrial revolution 

that there were numbers of the “superbrains” for making great 

contributions to founding the thermodynamics [N.L.S. Carnot (1796-

1832), B.P.E. Clapeyron (1799-1864), J.P. Joule (1818-1889), H.L.F. von 

Helmholtz (1821-1894), R.J.E. Clausius (1822-1888), W. Thomson 

(Load Kelvin) (1824-1907), J. W. Gibbs (1839-1903), L.E. Boltzmann 

(1844-1906), W.H. Nernst (1864-1941)], and to founding the continuum 

mechanics [T. Young (1773-1829), S.D. Poisson (1781-1840), C-L. 

Navier (1785-1836), A. Caucy (1789-1857), G. Green (1793-1841), G. 

Lame (1795-1870), B.S. Saint-Venant (1797-1886), F. Neumann (1798-

1895), G.G. Stokes (1819-1903), J.C. Maxwell (1831-1879), J. 

Bauschinger (1834-1893), J.V. Boussinesq (1842-1929), W. Voigt (1850-

1919), H. Hertz (1857-1894)]. 

 

(2) The Role of Measuring the Indentation Hardness  
                       in The Era of Industrial Revolution 
 Establishment of the test methods for determining the mechanical 

characteristics (elasticity, strength, plasticity, etc.) of iron/steel-products 

were the fatal issues in The Industrial Revolution.  The test methods for 

characterizing “elasticity” have already been established in the Era with 

the pioneering works made by R. Hook (1635-1703) and T. Young. On 

the other hand, as to the test method and the physics of “strength” in The 

Mid-Term Industrial Revolution (the mid-19th century), there were none 

of systematic studies until the Weibull statistics (W. Weibull (1887-

 

Simeon Denis Poisson 

(1781-1840) 

 
James Clerk Maxwell 

  (1831-1879) 

 
Thomas Young 

(1773-1829) 
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1979)) in the end of 19th century and the Griffith’s deterministic strength 

theory (A.A. Griffith (1893-1963)) in the beginning of 20th century.  The 

science and engineering for the study of “plasticity” of iron/steel was in 

the most earnest with the practical issues of rolling/sliding problems of 

wheel/rail contact along with the developments of steam locomotives, 

although the concept, physics, as well as the testing techniques of 

plasticity were still in predawn darkness. In 1886, however, J. 

Bauschinger examined the elastic limit and the plasticity-related 

irreversible deformation that has been widely recognized as the 

“Bauschinger effect” in the 20th century.  In these historical ambience, 

indentation hardness testing played an important role in practically 

characterizing the plasticity of iron/steel products, though it was required 

one more century for us to get a deeper understanding of the physics of 

indentation hardness. 

 

(3) Test Techniques for Measuring Indentation Hardness 
           and the History of Elastoplastic Contact Mechanics 
 F. Mohs (1773-1839) introduced the “Mohs hardness” in order to rank 

the hardness (scratch resistance) of minerals. The Mohs hardness is the 

so-called “scratch hardness”, not the indentation hardness. It is based on 

the relative scratch resistance; talc (Mg3Si4O10(OH)2) as the softest 

mineral is assigned a value of 1, and diamond (C) as the hardest mineral 

is assigned a value of 10. Most of minerals are relatively ranked between 

1 and 10.  There is a tight correlation between the Mohs hardness and 

the indentation hardness, while we cannot use the Mohs hardness as a 

quantitative material characteristic, not like the indentation hardness. The 

Brinell indentation test was proposed by J.A. Brinell (1849-1925) in 1890 

to quantitatively characterize the hardness of steel. In its standard test 

procedure, the Brinell hardness HB  is defined as the indentation load 

P   (=3ton) divided by the total surface area A   of the residual 
impression, i.e., HB P A= , by the use a spherical steel indenter with the 

diameter of 10mm, having been widely utilized up to the present date. In 

1898, A. Martens developed a breakthrough indenter that may be a 

pioneering instrument of the present instrumented indentation apparatus. 

The Martens indenter is capable of measuring not only the indentation 

load P , but also the penetration depth h , namely measuring the P - h   

Bauschinger-Ewing extensometer 

(precision of strain measurement: 

 62.5 10ε −≈ × ) 
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loading curve. He proposed the Martens hardness HM  in terms of the 
maximum indentation load maxP   and the in-situ penetration depth 

maxh   at the maximum load. The Martens hardness is widely in use 

nowadays as the Universal Hardness HU . The concept of hardness via 

in-situ determination under load was actually very pioneering in the end 

of 19th to the beginning of 20th centuries because it has been usual to 

determine the indentation hardness such as the Brinell hardness and the 

Vickers hardness by the use of the residual indentation impression.  

 

The indentation test techniques with a spherical-tip indenter such as the 

Brinell hardness test became inappropriate for characterizing the contact 

hardness of high-tech hard materials developed in 20th century, leading 

to the diamond conical/pyramidal-tip indenters. R. Smith and G. 

Sandland at Vickers Ltd. proposed in 1923 the indentation test technique 

using a diamond tetrahedral pyramid, and then commercialized in 1925 

the “Vickers hardness tester”. As we made detailed considerations in 

Chap. 5, the Vickers indenter has a specific inclined face-angle (refer to 

Fig. 5.4) in order to keep a consistency with the Brinell hardness testing. 

This design concept has then been transferred to the trigonal pyramid 

indenter proposed by E.S. Berkovich in 1950.  

 The Brinell hardness HB  and the Vickers hardness HV  are defined 

as the indentation load divided by the total contact area of the resultant 

residual impression. On the other had in Martens hardness testing, the 

projected contact area under load is utilized in order to calculate the 

Martens hardness HM   that means the mean contact pressure under 

load. The significance of the indentation hardness defined as the mean 

 

Martens indenter 
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contact pressure was first emphasized by E. Meyer in 1908 on the basis 

of materials physics. He demonstrated that the indentation-induced 

normal stresses on the contact surface solely as well as exclusively 

contribute to the applied indentation load, and then concluded the 

importance of the projected contact area not the total contact area in 

calculating the indentation hardness. The indentation contact hardness in 

terms of the indentation load divided by the projected contact area is now 
referred to as the Meyer hardness MH . 

  The Meyer hardness MH  of spherical indentation is dependent on the 

penetration depth, i.e., MH   increases with the increase in penetration 

depth due to the geometrically non-similar tip-configuration unlike the 

cone/pyramid indenters with geometrical self-similarity (see the details 

given in Chap. 5).  On the basis of experimental observations, Meyer 

proposed the Meyer’s law; the Meyer hardness of spherical indentation 
is expressed with ( )MH f d D=   in terms of the diameter D   of the 

spherical indenter and the diameter d  of the projected circle of residual 

impression (refer to Eqs. (3.30), (5.4) and (5.9)). In other words, the 

Meyer hardness is independent of the diameter D   of the spherical 

indenter once we control the penetration depth in order to make the ratio 
of d D  constant (the Meyer’s law of geometrical similarity).  

 In the beginning of the 20th century, it has been well recognized that 
the contact hardness MH   is a “measure of plasticity”, although there 

existed none of materials physics to correlate the contact hardness to the 

yield stress Y . In the 1920s, R. Hill and then C. Prandtle derived the 
formula of MH c Y= ⋅  (the constraint factor 2.57c = ) by applying the 

two-dimensional slip-line field theory to a perfectly plastic body indented 

by a flat punch. The extensive as well as the intensive indentation testing 

and the finite-element-based numerical analyses were conducted in the 

decade from 1960 to 1970 by D. Tabor, et al. for evaluating the constraint 

factor c . They proved that the constraint factor ranges in 2.5 3.2c≤ ≤  

depending on the tip-geometry of the indenter used as well as the contact 

friction of the material indented. 

 In 1961, N.A. Stilwell and D. Tabor emphasized the importance of 

measuring the indentation loading/unloading P h−   hysteresis curve 

and then demonstrated that it is capable of determining the elastic 

modulus from the slope of the unloading P h−   line. Based on these 

E. Meyer, Zeit. Verein. Deutsch. Ing. 

52,740(1908) 
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experimental results and analyses, D. Newey, M.A. Wilkins, and H.M. 

Pollock designed a pioneering instrumented indentation apparatus in 

1982, having been the historical origin of the present conventional 

micro/nano instrumented indentation apparatus.  
 The Meyer hardness MH   of a fully plastic body is a quantitative 

measure for the yield stress Y  as mentioned above. On the other hand, 

not only the plastic flow but also the elastic deformation significantly 

affects the Meyer hardness of elastoplastic body. R. Hill (1950) first 

applied the cavity model to describe the Meyer hardness in terms of the 

elastic modulus 'E   and the yield stress Y   of an elastoplastic body 

indented by a sphere, and then followed by K.L. Johnson (1970) for 

conical indentation. Based on these pioneering works, we can now fully 

understand the contact physics of the Meyer hardness of elastoplastic 
body as a function of the plastic index ( )'IPI E cYε=   in a unified 

manner based on the additivity principle of the excluded volume of 

indentation, the details of which have already been given in Sec. 5.1(2) 

of this textbook. 

 

(3) Theoretical Foundation of  
                      Elastic/Viscoelastic Contact Mechanics 
 The classic paper of H.R. Hertz (1882), 

    “ Über die Berührung fester elastischer Körper (On the   
         contact of elastic solids)”, J. reine und angewandte  

                                  Mathematik, 92, 156-171, 

is the historical origin of the indentation contact mechanics. He 

successfully solved an elastic contact problem; the analytical derivation 
of the contact pressure distribution ( )p r  as a function of the contact 

displacement ( )zu r  for an elastic sphere (radius 1R , elastic modulus 

1E  ) pressed into contact with another sphere ( 2R  , 2E  ) by an external 

force P  . Only three years afterward from the Hertz theory, J.V. 

Boussinesq (1885) published a paper based on the potential theory for the 

more generalized elastic contact problems including the Herzian contact 

problem. Due to the mathematical difficulties in applying the Boussinesq 

theory to various types of axisymmetric contact problems, its analytical 

solution was first made by A.E.H. Love in the 1930s, and then by I.N. 

Sneddon in the 1960s through using the Hankel transformation, the 

  
Heinrich Rudolf Hertz (1857-1894) 

  
Joseph Valentin Boussinesq 

(1842-1929) 
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details of which have already been demonstrated in Chap.3.  
  We have had a significant upsurge of the science and engineering of 
organic polymers and plastic materials since 1940s. In these periods, the 

great scientists including P.J. Flory, J.D. Ferry, et al. made a sound basis 

of the theoretical as well as experimental frameworks of the polymer 

rheology and the molecular theories of viscoelastic deformation and flow.  

The theoretical extension of indentation contact mechanics to the time-

dependent viscoelastic studies was first made by J.R.M. Radock(1957) 

through applying the “elastic-to-viscoelastic correspondence principle” 

to the elastic Hertz theory, and then followed by S.C. Hunter, M. Sakai, 

W.H. Yang, et al. through extending the Radock’s study for spherical 

indentation to the various types of axisymmetric indentation contact 

problems and experiments. 
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【A】 

Acrylate resin 141, 153, 155 

Amorphous 49, 135, 147, 150 

Amorphous selenium 135, 150 

Adhesion toughness 81, 156 

 

【B】 

Beltrami-Michell equation 8-10, 13  

Bessel function 15, 167 

Body force 4-6, 9, 12, 165 

Boltzmann’s convolution integral 57-58, 170 

Boussinesq contact problems 90-94, 117 

Bright-field method 133  

 →dark-field method 

 

【C】 

Carbon; graphite 

 glass-like carbon; glassy carbon 48, 144 

 non-graphitizable/ graphitizable) 144-145 

 polycrystalline graphite 144-145 

Carson transform 58-61 

Cavity model 38-41, 178 

Chebyshev polynomials 94 

Compatibility equation 3, 5, 8-13, 47 

Compliance 52, 57, 60, 86, 121, 131, 149, 172 

 frame compliance 121-125, 130, 132 

Constitutive equation 

 →viscoelastic 

Constraint factor 37, 114, 126, 177 

 

 

 

 

 

 

 

Contact 

 contact area 19, 34, 40-47, 63, 122, 131 

 contact depth, relative c. d. 

    19, 25, 45, 96, 19, 126 

 contact friction 1, 37, 114, 177 

contact pressure 

      21, 25, 32, 40, 72, 91-97, 176 

 contact radius 19, 23-36, 67, 72-80, 155 

Continuum mechanics 1, 7, 39, 174 

Creep 

 creep compliance 

  52, 59, 128-137, 149, 172 

 creep deformation 49-64, 85-87, 135, 159 

 creep function 54-86, 130, 158 

Creeping-up 115, 152 

Cylindrical coordinate 5, 11-15, 161, 168 

 

【D】 

Dark-field method 132 

 →bright-field method 

Deformation 1 

 normal; elongational 1 

 shear 1-8, 29, 164 

Displacement gradient 1, 2, 90 

 

【E】 

Elastic modulus 8, 20, 25, 33-59,  

71, 91, 100, 171 

 bulk modulus 31, 60 

 effective elastic modulus 89, 103, 155 

 equilibrium modulus 51, 60, 99 

 glassy modulus 51, 60, 99, 116  

 pseudo modulus 53, 55 

 shear modulus 8, 29, 59, 116  

 Young’s modulus 7, 22, 31, 60, 72 

【INDEX】
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Elastic body 7-45, 57-82, 96, 107, 112, 120, 143 

 linear elastic 52 

Elasticity 

 elastic limit 28, 37, 113, 175 

 elastic recovery 34, 43, 126, 142 146 

Elastic-viscoelastic corresponding principle 

  59, 67, 84, 115, 134 

Elastoplastic 26, 34, 44-48, 71, 81, 102, 109-114 

Enthalpy 28, 151 

Entropy 28 

Equilibrium equation 4, 8, 10, 12, 165 

 mechanical equilibrium equation 8 

Excluded volume 39-44, 53, 102, 119, 134, 140 

  additive principle of excluded volume  

39-42, 102, 109, 134, 157 

 

【F】 

Field-Swain approximation 111-113 

 →Oliver-Pharr approximation 

Film, coat 88-105, 117, 152 

 thickness of 88-104, 117, 153 

Film/substrate composite 88, 117, 152 

Finite element method/analysis 43, 98, 105 

 FEM, FEA 33, 42, 37, 71, 104, 106-116  

Fredholm integral equation 93, 103, 117, 155 

Free energy 

 Gibbs free energy 28, 39, 46, 76 

Freezing point; crystallization point 49 

Fused quartz; silica glass 124, 133, 145-155 

 

【G】 

Geometrical similarity 26, 36, 42, 63, 74, 109, 

119, 128, 139, 177 

Glass, glassy solids 49, 151 

Glass transition 49, 135, 147-152 

Graphite 144-147 

【H】 

Hankel transform 15-20, 93, 167 

Hardness 

 Brinell 19, 34, 44, 119, 175 

 Meyer 34-47, 67-70, 81, 102, 121, 133, 153 

 Vickers/Berkovich 42- 44, 63, 72, 107, 115 

Harmonic equation 15 

 bi-harmonic e. 3, 11-20, 167 

 harmonic function 10, 93  

Hertz theory  

 Hertzian contact 22-25, 33, 152 

Hookean spring 50, 57  

Hydrostatic pressure 38, 60 

Hysteresis curve 42-48, 80, 109, 122-127,  

  133, 139-147, 152-157, 177 

 

【I】 

Inclined face-angle 24, 37-44,  

  63, 108-119, 139-141, 176 

Incompressible  

 elastic body 60, 107 

 elastoplastic body 39 

 viscoelastic body 62, 129 

Indentation 

 instrumented 35, 64, 88, 110, 121, 139, 141 

microscope 41, 65, 77, 104, 114,  

 131-135, 150-158 

Indentation contact mechanics 

 elastic 19 

 elastoplastic 34 

 numerical 106 

 viscoelastic 63 

Indentation load 18-27, 34, 72  

Indentation strain 26, 36-38, 63, 102, 114, 128 
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Indenter 

 Berkovich 44, 119 

 Brinell (spherical) 22, 44 

 cone 24 

 cylindrical 21  

 diamond 115, 132, 148, 152 

 Knoop 139-141 

 Rockwell 19, 34, 36 

 sapphire 132, 148 

 Vickers 44, 119   

 Vickers/Berkovich equivalent cone 

 53-55, 113, 122, 139 

Index of projected area 119, 139 

Instrumented indentation microscope 

 → indentation  

Instrumented indenter 

 → indentation 

Internal pressure 38 

 

【J】 

JKR theory 71, 79-85, 156 

 

【K】 

 

【L】 

Lame constant 13 

Laminate composites 88-104, 117, 152-155 

Laplace equation 10, 15  

Laplacian operator 8, 10, 16 

Laplace transform 

  51-61, 84, 131, 137, 159, 169 

Load, force 1 

Loading-unloading curve 

 hysteresis curve 42-48, 80, 109, 122-127, 

133, 139-147, 152-157, 177 

Loading/unloading-coefficient 110, 126 

Loop energy 46, 48, 140-146 

 

【M】 

Magnesia, magnesium oxide 141, 143 

Master curve 82, 150 

Maxwell model 

 → viscoelastic 

Melting point 49 

Memory function 57, 172 

Metals 

 aluminum 48, 113, 141 

 copper 45, 48, 113, 141 

Methyl methacrylate resin 141 

Methyl-silsesquioxian (MeSiO3/2) 152 

Meyer hardness  

 → hardness 

 

【N】 

Network modifier 147 

 

【O】 

Oliver-Pharr approximation 111-113, 126 

 

【P】 

Penetration depth 18-27, 35, 42-45, 63-66 

Perfectly elastic body 

 →elastic body 

Perfectly plastic body 37, 112, 142, 177 

Pile-up 37, 43, 95, 112-114 

 →sink-in 

Plane strain 9-13, 20, 63, 108, 116  

 Plane-strain elastic modulus 20, 26, 108 

Plasticity 34-37, 113, 134, 141 

 plastic energy dissipation  

 40, 46-48, 141-146 
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Plastic index, PI 41-45, 83, 109-112,  

   123, 126, 134, 140 

Poisson’s effect, Poisson’s ratio 7, 10, 32, 60, 88, 

90, 98, 107, 115, 120, 129, 152 

Polyacrylate resin 153, 155 

Polycarbonate 153, 155,   

Polymer rheology 

 → rheology 

Principal axis, principal stress 29-32 

 

【Q】 

 

【R】 

Relaxation modulus 

 relax. shear modulus 52-58, 62, 98-100,  

116, 128-138, 149-151, 172 

Relaxation time 50, 54, 60-62, 100, 116,  

130, 148, 172 

Representative yield stress, strain 113, 114 

Residual impression 44, 54, 125, 143, 173 

Retardation time   

 →Relaxation time 

Rheology 179 

 polymer r. 179 

Rigid substrate 92-97 

 

【S】 

Saint Venant equation 3-11 

Scanning probe microscope 125 

Shear angle 2, 164 

Shift factor 82, 151 

Silicon carbide 48, 141 

Silicon nitride 45, 48, 133, 139, 140, 147 

Sink-in 22-25, 43, 95, 107, 112 

 →pile-up 

Sneddon’s function 20-24 

Soda-lime glass 45, 141, 144, 145, 147-155  

Sol-gel method 152 

Soft matters 71, 156 

Spectrum 55, 148, 172 

 relaxation-time spectrum 

 retardation-time spectrum 

Stimulus-response theory 

 → viscoelastic 

Strain  

 elongation 1 

 normal strain 2, 161 

 strain-/work-hardening 113 

 strain energy 30, 46, 74-76 

 shear strain 2, 30, 162 

 volumetric strain 13, 60 

Stress 1-11, 165 

 shear s. 

 normal s. 

Stress function 

 Airy (Airy’s s. f.) 11, 13 

 Love (Love’s s. f.) 13, 16 

Substrate  

 →Laminate composites 

Supercooled liquid 49 

Surface adhesion 71-87 

 surface tension, surface energy 37, 71-83 

  → JKR theory 

 

【T】 

Taylor expansion 1 

Time-temperature superposition rule 150 

 → shift factor 

Tresca criterion 29 

  → Von Mises criterion 
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【U】 

Unloading stiffness 122, 157  

 

【V】 

Van der Waals force 146 

Viscoelastic 

 linear viscoelastic 49-58, 86, 98, 169 

 Maxwell model 50-53, 61, 99 

 Meyer hardness 67-70 

 stimulus-response theory 57, 137 

 viscoelastic function 35, 60, 122, 128-138 

 Voigt model 50 

 Wiechert model 55, 172 

 Zener model 50-55, 68-70, 85, 98-100, 171 

Viscoelastic constitutive equation  

 →Viscoelastic  

Viscosity 50, 69, 151, 171 

Voigt model 

 → viscoelastic 

Volumetric additivity 39-41   

 → excluded volume 

Von Mises criterion 30-33, 37 

 → Tresca criterion 

 

【W】 

Wiechert model 

 → viscoelastic 

Work-hardening 

 →strain-/work-hardening 113 

Work-of-indentation, WOI 47 

 

 

 

 

 

 

【X】 

 

【Y】Yield stress/strength 38-60, 100-112 

  Young’s modulus 

  → elastic modulus 

 

【Z】Zener model 

  → viscoelastic 
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